
Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

A Model and Extensive Taxonomy for Machine Learning

on Graphs
Sasi : K.Suresh,

P. Manasa, Ch.Gopi

Assistant professor1,2,3,

Department of cse
RAJAMAHENDRI INSTITUTE OF ENGINEERING AND TECHNOLOGY

Abstract

Interest in graph representation learning

(GRL) has recently skyrocketed. In general,

there are three broad types of GRL approaches

that have developed in response to the

availability of labeled data. The first one is

network embedding, which is all about

learning relational structure representations

without supervision. The second one is called

graph regularized neural networks, and it uses

graphs to teach semi-supervised learning by

adding a regularization goal to neural network

losses. Finally, graph neural networks are

designed to learn differentiable functions

across arbitrary-structured discrete topologies.

Interestingly, however, there has been

relatively no effort to integrate the three

paradigms, even though these fields are

somewhat popular. Here, we strive to connect

graph neural networks, graph regularization,

and network embedding. In an effort to bring

together several separate areas of study, we

provide a thorough taxonomy of GRL

approaches. In particular, we suggest the

GRAPHEDM framework, which unifies well-

known methods for learning graph

representations using semi-supervised (e.g.,

GraphSage, GCN, GAT) and unsupervised

(e.g., DeepWalk, node2vec) means. We fitted

more than thirty existing techniques into this

framework to demonstrate GRAPHEDM's

generalizability. We think this unified

perspective does double duty: it lays the

groundwork for future study in the field and

helps us comprehend the thinking underlying

these techniques.

Keywords: Learning on Manifolds, Relational

Learning, Geometric Deep Learning, and

Network Embedding

1. Introduction

2. Developing representations for

intricate structured data sets is no

easy feat. Data defined on a

discretized Euclidean domain is

one kind of structured data that

has seen a plethora of effective

models produced in the last ten

years. One example is the use of

recurrent neural networks for

modeling sequential data, like

text or movies. These networks

are able to collect sequential

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

information and provide efficient

representations, as shown bytheir

performance on machine

translation and voice recognition

tasks. Convolutional neural

networks (CNNs) are another

example; they have achieved

remarkable performance in

pattern recognition tasks like

image classification and voice

recognition by parameterizing

neural networks according to

structural priors like shift-

invariance. These remarkable

achievements have only been

applicable to certain kinds of

data with a straightforward

relational structure, such as

sequential data or data that

follows regular patterns. Data

is not always so regular;complex

relationship structures often

emerge, and

comprehending the interplay

between objects requires data

extraction from such systems.

Social networks, computational

chemistry, biology,

recommendation systems, semi-

supervised learning, and other

domains make use of graphs,

which are universal data

structures that can represent

complex relational data (made up

of nodes and edges) (Gilmer et

al., 2017; Stark et al., 2006;

Konstas et al., 2009; Garcia and

Bruna, 2018). Since graph

topologies are not always

consistent and may change

greatly across graphs and even

between nodes in the same graph,

it is difficult to construct

networks with strong structural

priors for graph-structured data.

Irregular graph domains are

particularly incompatible with

operations like convolutions. For

example, since all of the pixels in

an image have the same

neighborhood structure, it is

possible to use the same filter

weights everywhere in the

picture. Nevertheless, given that

every node in a network may

have a unique neighborhood

structure, it is impossible to

provide an ordering of nodes

(Fig. 1). On top of that, non-

Euclidean domains are not

applicable to geometric priors

(such as shift invariance) used in

Euclidean convolutions (for

instance, translations may not

even be specified on such

domains).

3. Research into Geometric Deep

Learning (GDL) emerged in

response to these difficulties;

GDL seeks to apply deeplearning

methods to data that is not

geometrically normal. A lot of

people are very interested in

using machine learning

techniques on graph-structured

data because of how common

graphs are in real-world

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

applications. Learned

embeddings are low-dimensional

continuous vector

representations of graph-

structured data; GRL techniques

are one such approach.

Unsupervised GRL and

supervised (or semi-supervised)

GRL are the two main categories

of GRL learning tasks. The first

set of rules is based on the notion

of learning low-dimensional

Euclidean representations that

retain the original graph

structure. For a particular

downstream prediction job, such

node or graph categorization, the

second family likewise learns

low-dimensional Euclidean

representations. In contrast to the

unsupervised environment,

whereby inputs are often graph

structures, the supervised setting

typically uses a variety of signals

specified on graphs, or node

attributes, as inputs. Whereas in

the inductive learning scenario,

the underlying discrete graph

domain may change (for

example, when predicting

molecular attributes where each

molecule is a graph), in the

transductive learning context, it

can remain stable (for example,

when predicting user qualities in

a huge social network). Lastly, it

should be mentioned that the

majority of supervised and

unsupervised approaches learn

representations in vector spaces

that are based on geometry, but

there has been a recent uptick in

interest in non-Euclidean

representation learning. Thiskind

of learning attempts to acquire

knowledge about embedding

spaces that are not based on

geometry, such as spherical or

hyperbolic spaces. The primary

goal of this researchis to use an

embedding space that is

continuous and similar to the

input data's underlying discrete

structure (for instance,hyperbolic

space is a continuous form of

trees; Sarkar, 2011).

We think it is critical to

synthesize and explain these

techniques in one cohesive and

understandable framework since

the GRL field is expanding at a

remarkable rate. This review

aims to provide a comprehensive

overview of representation

learning techniques for graph-

structured data so that readers

may have a better understanding

of the many ways in which deep

learning models use graph

structure.

4. There are an assortment of graph

representation learning

questionnaires available. For a

full review of shallow network

embedding and auto-encoding

approaches, there are various

surveys that address the topic.We

recommend (Cai et al., 2018;

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Chen et al., 2018a; Goyal and

Ferrara, 2018b; Hamilton et al.,

2017b; Zhang et al., 2018a) for

this. Second, for data that is not

Euclidean, such manifolds or

graphs, Bronstein et al. (2017)

provides a comprehensive

review of deep learning methods.

Thirdly, approaches applying

deep learning to graphs,

particularly graph neural

networks, have been covered in

many recent surveys (Battaglia et

al., 2018; Wu et al., 2019; Zhang

et al., 2018c; Zhou et al., 2018).

Rather than establishing links

across several areas of graph

representation learning, most of

these studies focus down on only

one.

We develop a general framework

called the Graph Encoder

Decoder Model (GRAPHEDM)

to classify previous work into

four main areas: (i) methods for

shallow embedding, (ii) methods

for auto-encoding, (iii) methods

for graph regularization, and (iv)

methods for graph neural

networks (GNNs). This

framework expands upon the

encoder-decoder model

proposed by Hamilton et al.

(2017b).We also provide a Graph

Convolution Framework (GCF)

for describing convolution-based

GNNs, which have shown to be

very effective in many different

domains. According to

Veliˇckovi'c et al. (2018), we are

able to examine and contrast

several GNNs, which differ in

their design. These GNNs range

from those that operate in the

Graph Fourier1 domain to those

that use self-attention as a

neighborhood aggregation

function. The goal of this

comprehensive synthesis of

current research is to provide

readers with a better

understanding of the many

graph-based learning approaches

so that they may identify their

similarities and differences, as

well as their possible expansions

and limits. However, there are

three ways in which our survey

differs from earlier ones:

We introduce a general framework, GRAPHEDM, to

describe a broad range of super- vised and

unsupervised methods that operate on graph-

structured data, namely shal- low embedding

methods, graph regularization methods, graph auto-

encoding methods and graph neural networks.

Our survey is the first attempt to unify and view these
different lines of work from the same perspective, and

we provide a general taxonomy (Fig.3) to understand

differences and similarities between these methods. In

particular, this taxonomy en-

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean).

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs.

represents more than 30 different GRL

algorithms. To better understand the

differences between various strategies, it is

helpful to describe them within a thorough

taxonomy.

• We provide an open-source GRL library that

contains cutting-edge GRL methods and

crucial graph applications including link

prediction and node categorization. You may

find our implementation at

https://github.com/google/gcnn-survey-paper.

It is open to the public.

Organization of the survey Section 2 provides

a clear statement of the issue setting for GRL

and a review of fundamental graph concepts.

Section 2.2.1 explains the function of node

features in GRL and their relationship to

supervised GRL; Section 2.2.2 differentiates

between inductive andtransductive learning;

Section 2.2.3.1 distinguishes between

positional and structural embeddings; and

Section 2.2.4distinguishes between supervised

and unsupervised embeddings. We also define

and

discuss the differences between these

important concepts in GRL. Section 3 then

presents GRAPHEDM, a generic framework

that may be used in inductive and transductive

learning contexts to define supervised and

unsupervised GRL techniques, with or without

node characteristics. We provide a

comprehensive taxonomy of GRL approaches

(Fig. 3) based on GRAPHEDM, which

incorporates more than thirty contemporary

GRL models. We use this taxonomy to

characterize both supervised (Section 5) and

unsupervised (Section 4) methods. Section 6

concludes with an overview of graph

applications.

5. Preliminaries

6. Graph representation learning

approaches attempt to address

the generalized network

embedding issue; for an

overview, see Table 1. Here, we

offer the notation used

throughout the article.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

6.1 Definitions
 Notation Meaning

Abbreviations

GRL

GRAPHED

M

GNN

GCF

Graph Representation

Learning Graph Encoder

Decoder Model Graph Neural

Network

Graph Convolution Framework

Graph notation

G = (V, E)

vi ∈ V
dG(·, ·)
deg(·)

D ∈ R|V |×|V |

W ∈ R|V |×|V

| W̃ ∈ R|V |×|V
|

A ∈ {0, 1}|V |×|V |

L ∈ R|V |×|V |

L˜ ∈ R|V |×|V |

Lrw ∈ R|V |×|V |

Graph with vertices (nodes) V and edges E

Graph vertex

Graph distance (length of shortest path)

Node degree

Diagonal degree matrix

Graph weighted adjacency matrix

Symmetric normalized adjacency matrix (W̃ = D−1/2WD−1/2)

Graph unweighted weighted adjacency matrix

Graph unnormalized Laplacian matrix (L = D − W)

Graph normalized Laplacian matrix (L˜ = I − D−1/2WD−1/2)

Random walk normalized Laplacian (Lrw = I − D−1W)

GRAPHEDM
notation

d0

X ∈ R|V |×d0

d

Z ∈ R|V |×d

dl

Hl ∈ R|V |×dÆ

Y
yS ∈ R|V |×|Y|

yˆS ∈ R|V |×|Y|

s(W) ∈ R|V |×|V

| Ŵ ∈ R|V |×|V |

ENC(·; ΘE)

DEC(·; ΘD)
DEC(·; ΘS)

LS (yS, yˆS; Θ)
SUP

LG,REG(W, Ŵ ;

Θ)

LREG(Θ)

d1(·, ·)

d2(·, ·)

|| · ||p

|| · ||F

Input feature dimension

Node feature matrix

Final embedding dimension

Node embedding matrix

Intermediate hidden embedding dimension at layer l

Hidden representation at layer l

Label space

Graph (S = G) or node (S = N) ground truth labels

Predicted labels

Target similarity or dissimilarity matrix in graph regularization

Predicted similarity or dissimilarity matrix

Encoder network with parameters ΘE Graph

decoder network with parameters ΘD Label

decoder network with parameters ΘS

Supervised loss

Graph regularization loss

Parameters’ regularization loss

Matrix distance used for to compute the graph regularization loss

Embedding distance for distance-based decoders

p−norm

Frobenuis norm

Table 1: Summary of the notation used in the paper.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Definition 1 (Graph). A graph G given as a pair: G

= (V, E), comprises a set of vertices (or nodes) V =
{v1, . . . , v|V |} connected by edges E = {e1, . . . , e|E|},

where each edge ek is a pair (vi, vj) with vi, vj ∈ V

. A graph is weighted if there exist a weight function:

w : (vi, vj) → wij that assigns weight wij to edge

connecting nodes vi, vj ∈ V . Otherwise, we say that

the graph is unweighted. A graph is undirected if (vi, vj)

∈ E implies (vj, vi) ∈ E,
i.e. the relationships are symmetric, and directed if the

existence of edge (vi, vj) ∈ E does

not necessarily imply (vj, vi) ∈ E. Finally, a graph can be

homogeneous if nodes refer to one type of entity and

edges to one relationship. It can be heterogeneous if it

contains different

types of nodes and edges.
For instance, social networks are homogeneous graphs

that can be undirected (e.g. to encode symmetric

relations like friendship) or directed (e.g. to encode the

relation following); weighted (e.g. co-activities) or

unweighted.

Definition 2 (Path). A path P is a sequence of edges

(ui1 , ui2), (ui2 , ui3), . . . , (uik , uik+1) of length k. A

path is called simple if all uij are distinct from each

other. Otherwise, if a path visits a node more than

once, it is said to contain a cycle.

Definition 3 (Distance). Given two nodes (u, v) in a

graph G, we define the distance from u to v, denoted

dG(u, v), to be the length of the shortest path from u

to v, or ∞ if there exist no path from u to v.

The graph distance between two nodes is the analog of

geodesic lengths on manifolds.

Definition 4 (Vertex degree). The degree, deg(vi), of

a vertex vi in an unweighted graph is the number of

edges incident to it. Similarly, the degree of a vertex vi

in a weighted graph is the sum of incident edges

weights. The degree matrix D of a graph with vertex

set V is the |V | × |V | diagonal matrix such that Dii =

deg(vi).

Definition 5 (Adjacency matrix). A finite graph G =

(V, E) can be represented as a square

|V |×|V | adjacency matrix, where the elements of the matrix

indicate whether pairs of nodes are adjacent or not. The

adjacency matrix is binary for unweighted graph, A ∈

{0, 1}|V |×|V |, and non-binary for weighted graphs W ∈
R|V |×|V |. Undirected graphs have symmetric ad-

jacency matrices, in which case, W̃ denotes

 ̃

symmetrically-normalized adjacency matrix:

W = D−1/2WD−1/2, where D is the degree matrix.
Definition 6 (Laplacian). The unnormalized

Laplacian of an u˜ndirected graph is the |V |×

|V | matrix L = D − W. The symmetric normalized
Laplacian is L = I − D−1/2WD−1/2.
The random walk normalized Laplacian is the matrix

Lrw = I − D−1W.

The name random walk comes from the fact that D−1W

is a stochastic transition matrix that can be interpreted as

the transition probability matrix of a random walk onthe

graph. The graph Laplacian is a key operator on graphs

and can be interpreted as the analogue of the continuous

Laplace-Beltrami operator on manifolds. Itseigenspace

capture important properties about a graph (e.g. cut

information often used for spectral graph clustering) but

can also serve as a basis for smooth functions defined on

the graph for semi-supervised learning (Belkin and

Niyogi, 2004). The graph Laplacian is also closely

related to the heat equation on graphs as it is the

generator of diffusion processes on graphs and can be

used to derive algorithms for semi- supervised learning

on graphs (Zhou et al., 2004).

Definition 7 (First order proximity). The first order

proximity between two nodes vi and vj is a local

similarity measure indicated by the edge weight wij.

In other words, the first- order proximity captures the

strength of an edge between node vi and node vj

(should it exist).

Definition 8 (Second-order proximity). The second

order proximity between two nodes vi and vj is measures

the similarity of their neighborhood structures. Two

nodes in a network will have a high second-order

proximity if they tend to share many neighbors.

Note that there exist higher-order measures of proximity

between nodes such as Katz Index, Adamic Adar or

Rooted PageRank (Liben-Nowell and Kleinberg, 2007).

These notions of node proximity are particularly

important in network embedding as many algorithms are

optimized to preserve some order of node proximity in

the graph.

The generalized network embedding problem

Network embedding is the task that aims at learning a

mapping function from a discrete graph to a continuous

domain. Formally, given a graph G = (V, E) with

weighted adjacency matrix W ∈ R|V |×|V |, the goal is to

learn low-dimensional vector representations {Zi}i∈V

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

(embeddings) for nodes in the graph {vi}i∈V , such that

important graph properties (e.g. local or global

structure) are preserved in the embedding space. For

instance, if two nodes have similar connections in the

original graph, their learned vector representations

should be close. Let Z ∈ R|V |×d denote the node2

embedding matrix. In practice, we often want low-

dimensional embeddings (d |V |) for scalability purposes.

That is, network embedding can be viewed as a

dimensionality reduction technique for graph structured

data, where the input data is defined on a non- Euclidean,

high-dimensional, discrete domain.

NODE FEATURES IN NETWORK EMBEDDING

Definition 9 (Vertex and edge fields). A vertex field

is a function defined on vertices f : V → R and similarly

an edge field is a function defined on edges: F : E →

R. Vertex fields and edge fields can be viewedas analogs

of scalar fields and tensor fields on manifolds. Graphs may

have node attributes (e.g. gender or age in social

networks; article contents for citation networks) which

can be represented as multiple vertex fields, commonly

referred to as node features. In this survey, we denote

node features with X ∈ R|V |×d0 , where d0 is theinput

feature dimension. Node features might provide useful

information about a graph. Some network embedding

algorithms leverage this information by learning

mappings:

W, X → Z.

In other scenarios, node features might be unavailableor

not useful for a given task: net- work embedding canbe

featureless. That is, the goal is to learn graph

representations via mappings:

W → Z.
Although we present the model taxonomy via embedding

nodes yielding Z ∈ R|V |×d, it can also be extended for models

that embed an entire graph i.e. with Z ∈ Rd as a d- dimensional

vector for the whole graph (e.g. (Duvenaud et al., 2015; Al-

Rfou et al., 2019)), or embed graph edges Z ∈ R|V |×|V |×d as a

(potentially sparse) 3D matrix with Zu,v ∈ Rd representing the

embedding of edge (u, v). Note that depending on whether

node features are used or not in the embedding algorithm,

the learned representation could capture different aspects

about the graph. If nodes features are being used,

embeddings could capture both structural and semantic

graph information. On the other hand, if node features

are not being used, embeddings will only preserve

structural information of the graph.
Finally, note that edge features are less common than

node features in practice, but can also be used by

embedding algorithms. For instance, edge features can

be used as regularization for node embeddings (Chen et

al., 2018c), or to compute messages from neighbors as

in message passing networks (Gilmer et al., 2017).

TRANSDUCTIVE AND INDUCTIVE NETWORK

EMBEDDING

Historically, a popular way of categorizing a network
embedding method has been by whether the model can

generalize to unseen data instances – methods are referred
to as operating in either a transductive or inductive setting

(Yang et al., 2016). While we do not use this concept for
constructing our taxonomy, we include a briefdiscussion
here for completeness.

In transductive settings, it assumed that all nodes in the

graph are observed in training (typically the nodes all

come from one fixed graph). These methods are used to

infer information about or between observed nodes in

the graph (e.g. predicting labels for all nodes, given a

partial labeling). For instance, if a transductive method

is used to embed the nodes of a social network, it can be

used to suggest new edges (e.g. friendships) between the

nodes of the graph. One major limitation of models

learned in transductive settings is that they fail to

generalize to new nodes (e.g. evolving graphs) or new

graph instances.

On the other hand, in inductive settings, models are

expected to generalize to new nodes, edges, or graphs

that were not observed during training. Formally,

given training graphs (G1, . . . , Gk), the goal is to learn

a mapping to continuous representations that can

generalize to unseen test graphs (Gk+1, . . . , Gk+l). For

instance, inductive learning can be used to embed

molecular graphs, each representing a molecule

structure (Gilmer et al., 2017), generalizing to new

graphs and showing error margins within chemical

accuracy on many quantum properties. Embedding

dynamic or temporally evolving graphs is also another

inductive graph embedding problem.

There is a strong connection between inductive graph

embedding and node features (Sec- tion 2.2.1) as the latter

are usually necessary for most inductive graph

representation learn- ing algorithms. More concretely, node

features can be leveraged to learn embeddings with

parametric mappings and instead of directly optimizing the

embeddings, one can optimize the mapping’s parameters.

The learned mapping can then be applied to any node

(even those that were not present a training time). On the

other hand, when node features are not available, the first

mapping from nodes to embeddings is usually a one-hot

encoding which fails to generalize

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

to new graphs where the canonical node ordering is not

available.

Finally, we note that this categorization of graph

embedding methods is at best an incomplete lens for

viewing the landscape. While some models are

inherently better suited to different tasks in practice,

recent theoretical results (Srinivasan and Ribeiro, 2020)

show that models previously assumed to be capable of

only one setting (e.g. only transductive) can be used in

both.

POSITIONAL VS STRUCTURAL NETWORK

EMBEDDING

An emerging categorization of graph embedding

algorithms is about whether the learned embeddings are

positional or structural. Position-aware embeddings

capture global relative positions of nodes in a graph and

it is common to refer to embeddings as positional if they

can be used to approximately reconstruct the edges inthe

graph, preserving distances such as shortest paths in the

original graph (You et al., 2019). Examples of positional

embedding algorithms include random walk or matrix

factorization methods. On the other hand, structure-aware

embeddings capture local structural information about

nodes in a graph, i.e. nodes with similar node features or

similar structural roles in a network should have similar

embeddings, regardless of how far they are in the original

graph. For instance, GNNsusually learn embeddings by

incorporating information for each node’s neighborhood,

and the learned representations are thus structure-aware.

In the past, positional embeddings have commonly been

used for unsupervised tasks where positional information is

valuable (e.g. link prediction or clustering) while structural

embeddings have been used for supervised tasks(e.g. node

classification or whole graph classification). More recently,

there has been attempts to bridge the gap between

positional and structural representations, with positional

GNNs (You et al., 2019) and theoretical frameworks

showing the equivalence between the two classes of

embeddings (Srinivasan and Ribeiro, 2020).
UNSUPERVISED AND SUPERVISED NETWORK

EMBEDDING

Depending on whether extra information like

node or graph labels is supplied, network

embedding may be either supervised or

unsupervised. The former case involves using

simply the graph structure and, in certain

cases, node attributes. Optimization of a

reconstruction loss—a measure of the learnt

embeddings' ability to mimic the original

graph—is often used in unsupervised network

embedding with the objective of learning

embeddings that retain the graph structure.The

objective of supervised network embedding is

to improve models for aparticular job, such

graph or node classification, and to train

embeddings for a specific purpose, like

predicting graph or nodeproperties. In Section

3, we go into further depth on the distinctions

between supervised and unsupervised

approaches, and we utilize the amount of

supervision to construct our taxonomy.

A Taxonomy of Graph Embedding

Models
We first describe our proposed framework,GRAPHEDM,

a general framework for GRL (Sec- tion 3.1). In

particular, GRAPHEDM is general enough that it can be

used to succinctly de- scribe over thirty GRL methods

(both unsupervised and supervised). We use

GRAPHEDM to introduce a comprehensive taxonomy in

Section 3.2 and Section 3.3, which summarizes exiting

works with shared notations and simple block diagrams,

making it easier to under- stand similarities and

differences between GRL methods.

The GraphEDM framework

The GRAPHEDM framework builds on top of the work of

Hamilton et al. (2017b), which describes unsupervised

network embedding methods from an encoder-decoder

perspective.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Figure 2: Illustration of the GRAPHEDM framework. Based on the supervision

available, methods will use some or all of the branches. In particular, unsupervised

methods do not leverage label decoding for training and only optimize the similarity or

dissimilarity decoder (lower branch). On the other hand, semi-supervised and supervised

methods leverage the additional supervision to learn models’ parameters (upper

branch).

Cruz et al. (2019) also recently proposed a modular

encoder-based framework to describe and compare

unsupervised graph embedding methods. Different from

these unsupervised frameworks, we provide a more

general framework which additionally encapsulates

super- vised graph embedding methods, including ones

utilizing the graph as a regularizer (e.g. Zhu and

Ghahramani (2002))E, and graph neural networks such as

ones based on message passing (Gilmer et al., 2017;

Scarselli et al., 2009) or graph convolutions (Bruna et

al., 2014; Kipf and Welling, 2016a).

Input The GRAPHEDM framework takes as input an

undirected weighted graph G = (V, E), with adjacency

matrix W ∈ R|V |×|V |, and optional node

features X ∈ R|V |×d0 . In (semi-)supervised settings, we

assume that we are given training target labels for

nodes (denoted N), edges (denoted E), and/or for the

entire graph (denoted G). We denote the supervision

signal as S ∈ {N, E, G}, as presented below.
Model The GRAPHEDM framework can be

decomposed as follows:

Graph encoder network ENCΘE : R|V |×|V | × R|V |×d0

→ R|V |×d, parameterized by Θ , which combines the

graph structure with node features (or not) to produce

node embedding matrix Z ∈ R|V |×d as:

Z = ENC(W, X; ΘE).

As we shall see next, this node embedding matrix might

capture different graph prop- erties depending on the

supervision used for training.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Graph decoder network DECΘD : R|V |×d → R|V |×|V |,

parameterized by ΘD, which uses the node embeddings

Z to compute similarity or dissimilarity scores for all noydEe

pairs, producing a matrix Ŵ ∈ R|V |×|V | as:

Ŵ = DEC(Z; ΘD).

Classification network DECΘS : R|V |×d → R|V |×|Y|,

where Y is the label space. This network is used in

(semi-)supervised settings and parameterized by Θ .

The output is a distribution over the labels yˆS , using

labels).

|V | ×E|dV g| e-level supervision, with ̂ ∈ Y , where
Y represents the edge label

space. For example, Y can be multinomial in

knowledge graphs (for describing the

types of relationships between two entities), setting

Y = {0, 1}#(relation types). It iSs common to have

#(relation types) = 1, and this is is known as link
nomenclature and position link prediction as an

node embeddings, as:
yS = DEC(Z; ΘS).

^ unsupervised task (Section 4). Then in lieu of yE we
utilize W , the output of the graph decoder network

 ̂
(which is learned to reconstruct a target similarity or

dissimilarity matrix) to rank potential edges.
Our GRAPHEDM framework is general (see Fig. 2 for

an illustration). Specific choices of the aforementionedyG

(encoder and decoder) networks allows GRAPHEDM to

realize specific graph embedding methods. Before

presenting the taxonomy and showing realizations of

various methods using our framework, we briefly

discuss an application perspective.

Output The GRAPHEDM model can return a

reconstructed graph similarity or dissim-

ilarity matrix Ŵ (often used to train unsupervised

embedding algorithms), as well as a
output labels yS for superv^ised applications. The label

output space Y varies depending on the supervised
application.

Node-level supervision, with yN ∈ Y|V |, where^ Y

represents the node label space. If Y is categorical, then

this is also known as (semi-)supervised node

classification (Section 6.2.1), in which case the label

decoder network produces labels for each node in the

graph. If the embedding dimensions d is such that d =

|Y|, then the label decoder network can be just a simple

softmax activation across the rows of Z, produc-

ing a distribution over labels for each node.

Additionally, the graph decoder network might also be

used in supervised node-classification tasks, as it can be

used to regu- larize embeddings (e.g. neighbor nodes

should have nearby embeddings, regardless of node
{ΘE, ΘD, ΘS} denote all model parameters. ing a

combination of the following loss terms:

Supervised loss term, LS , which compares the

Graph-level supervision, with ^ ∈ Y, where Y is the

graph label space. In

the graph classification task (Section 6.2.2), the label

decoder network converts node

embeddings into a single graph labels, using graph

pooling via the graph edges captured by W . More

concretely, the graph pooling operation is similar to

pooling in standard CNNs, where the goal is to

downsample local feature representations to capture

higher- level information. However, unlike images,

graphs don’t have a regular grid structure and it is hard

to define a pooling pattern which could be applied to

every node in the graph. A possible way of doing so is

via graph coarsening, which groups similar nodes into

clusters to produce smaller graphs (Defferrard et al.,

2016). There exist other pooling methods on graphs such

as DiffPool (Ying et al., 2018b) or SortPooling (Zhang

et al., 2018b) which creates an ordering of nodesbased on

their structural roles in the graph. Details aboutgraph

pooling operators is outside the scope of this workand we

refer the reader to recent surveys (Wu et al., 2019) for a

more in-depth treatment.

Taxonomy of objective functions
We now focus our attention on the optimization of models

that can be described in the

GRAPHEDM framework by describing the loss

functions used for training. Let Θ =

GRAPHEDM models can be optimized us-

supervised node classification tasks (S = N), the graph

predicted labels yˆS to the ground SUP vertices are split into labelled and unlabelled nodes (V

truth labels yS. This term depends on the task the

model is being trained for. For instance, in semi-

= VL 𝖴 VU), and the supervised loss is computed for

each labelled node in the graph:

^

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

REG

L (yN , yˆN ; Θ) =
Σ l(yN , yˆN ; Θ),

N

where l(·) is the loss function used for classification (e.g.

cross-entropy). Similarly for graph classification tasks
(S = G), the supervised loss is computed at the graph-

Graph regularization loss term, LG,REG, which
leverages the graph structure to impose regularization

constraints on the model parameters. This loss term acts
as a smoothing term and measures the distance between

the decoded similarity or d̂issim- ilarity matrix W , and
a target similarity or dissimilarity matrix s(W

), which might capture higher-order proximities than

the adjacency matrix itself:

LG,REG(W, Ŵ; Θ) = d1(s(W), Ŵ) , (1)

where d1(·, ·) is a distance or dissimilarity function.

Examples for such regularization are constraining

neighboring nodes to share similar embeddings, in terms

of their dis- tance in L2 norm. We will cover more

examples of regularization functions in Section 4 and

Section 5.

Weight regularization loss term, LREG, e.g. for

representing prior, on trainable model parameters for

reducing overfitting. The most commonregularization

is L2 regularization (assumes a standard Gaussian

prior):

i i

i|vi∈VL

level and can be summed across multiple training

graphs:

two-step learning algorithm might lead to sub-optimal

performances for the supervised task, and in general,

supervised methods (Section 5) outperform two-step

approaches.

Taxonomy of encoders
Having introduced all the building blocks of the

GRAPHEDM framework, we now introduce our graph

embedding taxonomy. While most methods we

describe next fall under the GRAPHEDM framework,

they will significantly differ based on the encoder used

to produce the node embeddings, and the loss function

used to learn model parameters. We divide graph

embedding models into four main categories:

Shallow embedding methods, where the encoder

function is a simple embedding lookup. That is, the

parameters of the model ΘE are directly used as node

embed- dings:

Z = ENC(ΘE)

= ΘE ∈ R|V |×d.

L (Θ) =
Σ

||θ||2. Note that shallow embedding methods rely on an
θ∈Θ embedd2ing lookup and are therefore transductive, i.e.

Finally, models realizable by GRAPHEDM framework
are trained by minimizing the total loss L defined as:
S S ̂

they generally cannot be directly applied in inductive
settings where the graph structure is not fixed.
Graph regularization methods, where the encoder

L = αLSUP(y , yˆ ; Θ) + βL

γLREG(Θ), (2)

S
G,REG (W, W ; Θ) + network ignores the graph structure and only uses

node features as input:

where α, β and γ are hyper-parameters, that can be tuned

or set to zero. Note that graph embedding methods can
Z = ENC(X; ΘE).
As its name suggests, graph regularization methods

be trained in a supervised (α /= 0) or unsupervised (α = leverage the graph structure through the graph

0) fashion.

Supervised graph embedding approaches leverage an

additional source of information to learn embeddings such

as node or graph labels. On the other hand, unsupervised

network embedding approaches rely on the graph structure

only to learn node embeddings.

A common approach to solve supervised embedding

problems is to first learn embeddings with an

unsupervised method (Section 4) and then train a

regularization loss term in Eq. (2) (β /= 0) to regularize

node embeddings.

supervised model on the learned embeddings. However, as

pointed by Weston et al. (2008) and others, using a

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Graph auto-encoding methods, where the

encoder is a function of the graph structure only:

Z = ENC(W ; ΘE).

Neighborhood aggregation methods, including

graph convolutional methods, where both the node

features and the graph structure are used in the

encoder network. Neighborhood aggregation

methods use the graph structure to propagate

information across nodes and learn embeddings

that encode structural properties about the graph:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Z = ENC(W, X; ΘE).

Historical Context

There is a general two-step process that most

machine learning models adhere to. Initially,

they forego the need of human feature building

in favor of automatically extracting significant

patterns from data. According to Bengio et al.

(2013), this is the part where representation

learning takes place. A second step involves

putting these representations to use in

supervised (like classification) or

unsupervised (like clustering, visualization,

and nearest-neighbor search) applications

further down the line. This task is referred to

as downstream processing.3

To facilitate the downstream process, a good

data representation should be both expressive

and concise, preserving the original data's

significant qualities. Overfitting and other

problems induced by the curse of

dimensionality may be mitigated, for example,

by using low-dimensional representations of

high-dimensional datasets. When it comes to

GRL, a graph encoder is used for

representation learning, while a graph or label

decoder is employed for jobs further down the

line, such as node classification and link

prediction. Graph encoder-decoder networks

have traditionally been used for manifold

learning. It is usual to presume that input data,

even if it exists on a high-dimensional

Euclidean space, is inherently contained on a

low-dimensional manifold. The classic

manifold hypothesis describes this. This

inherently low-dimensional manifold is what

manifold learning methods aim to retrieve. A

discrete approximation of the manifold is

often constructed initially, in the form of a

graph with edges connecting adjacent points in

the ambient Euclidean space. Graph distances

are a reasonable surrogate for local and global

manifold distances because manifolds are

locally Euclidean. Secondly, while keeping

graph distances as accurate as feasible,

"flatten" this representation of the graph by

learning a non-linear mapping from graph

nodes to points in low-dimensional Euclidean

space. Typically, these representations are

more manageable compared to the initial high-

dimensional ones, and they may subsequently

be used in subsequent applications.

When looking for solutions to the manifold

learning issue, non-linear4 dimensionality

reduction strategies were all the rage in the

early 2000s. For example, spectral approaches

are used by Laplacian Eigenmaps (LE)

(Belkin and Niyogi, 2002) to calculate

embeddings, and IsoMap (Tenenbaum et al.,

2000) to maintain global network geodesics by

a mix of the Floyd-Warshall algorithm and the

conventional Multi-dimensional scaling

algorithm. In Section 4.1.1, we outline a few

of these techniques that use shallow encoders.

Despite their significant influence on machine

learning, manifold dimensionality reduction

approaches are not scalable to big datasets.

Consider the time complexity of IsoMAP: it

exceeds quadratic time due to the need to

compute all pairs of shortest pathways. Since

the mappings from node to embeddings are

non-parametric, they cannot generate

embeddings for additional datapoints, which is

a potentially more significant drawback. The

issue of graph embedding has seen several

proposals for non-shallow network topologies

in recent years. Our GRAPHEDM framework

may be used to define graph neural networks

and graph regularization networks. When

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

compared to traditional approaches, GRL

models often provide more expressive,

scalable, and generalizable embeddings due to

their use of deep neural networks'

expressiveness.

In the next sections, we review recent methods for

supervised and unsupervised graph embedding

techniques using GRAPHEDM and summarize the

proposed taxonomy in Fig. 3.

Unsupervised Graph Embedding

Using the taxonomy outlined earlier, we will

now provide a summary of current methods

for unsupervised graph embedding. Without

using task-specific labels for the network or its

nodes, these approaches map the graph into a

continuous vector space, including its edges

and/or nodes. By learning to rebuild matrices

that measure the similarity or dissimilarity

between nodes, such as the adjacency matrix,

some of these approaches aim to learn

embeddings that maintain the network

structure. There are methods that use a

contrastive objective. For example, one could

compare nearby node-pairs to faraway ones:

nodes that are co-visited in short random

walks should have a higher similarity score

than distant ones. Another would compare real

graphs to fake ones: the mutual information

between a graph and all of its nodes should be

higher in real graphs than in fake ones.

Shallow embedding methods

The encoder function in shallow embedding

techniques is a basic embedding lookup; these

methods are transductive graph embedding

methods. The shallow encoder function is

simply: for every node vi in V, there is a

corresponding low-dimensional learnable

embedding vector Zi in Rd.

Z = ENC(ΘE)

= ΘE ∈ R|V |×d.

The data structure in the embedding space

matches the underlying graph structure, thanks

to learnt node embeddings. Generally

speaking, it's not dissimilar to principal

component analysis (PCA) and other

dimensionality reduction techniques;however,

the input data may not be linear. Specifically,

graph embedding issues may be addressed

using techniques for non-linear dimensionality

reduction, which often begin with constructing

a discrete graph from the data in order to

approximate the manifold. Wetake a look at

the distance-based and outer product-based

approaches to shallow graphembedding.

Distance-based methods By using a preset

distance function, these approaches maximize

embeddings in a way that keeps points that are

close together in the graph (as shown by their

graph distances, for example) as near together

in the embedding space as feasible. In a formal

sense, the decoder network may provide either

non-Euclidean (Section 4.1.2) or Euclidean

(Section 4.1.1) embeddings by computing

pairwise distance for a certain distance

function d2:

W

^ = DEC(Z; ΘD)

with Ŵ i j = d2(Zi, Zj)

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Auto-encoders

Figure 3: Taxonomy of graph representation learning methods. Based on what

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

information is used in the encoder network, we categorize graph embedding approaches

into four cat- egories: shallow embeddings, graph auto-encoders, graph-based

regularization and graph neural networks. Note that message passing methods can also be

viewed as spatial convo- lution, since messages are computed over local neighborhood in

the graph domain. Recip- rocally, spatial convolutions can also be described using

Figure 4: Shallow embedding methods. The encoder is a simple embedding look-up
and the graph structure is only used in the loss function.

Outer product-based methods These methods on the other hand rely on pairwise
dot-products to compute node similarities and the decoder network can be written as:

W = DEC(Z; ΘD) ^

= ZZT.

Embeddings are then learned by minimizing the graph regularization loss: LG , R̂ EG(W,
W ; Θ) = d̂ 1 (s (W), W). Note that for distance-based methods, the function s(·) measures
dissimilar- ity or distances between nodes (higher values mean less similar pairs of
nodes), while in outer-product methods, it measures some notion of similarity in the
graph (higher values mean more similar pairs).

4.1.1 DISTANCE-

BASED:

EUCLIDEAN METHODS

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Isometric Mapping As a non-linear

dimensionality reduction approach, (IsoMap)

(Tenenbaum et al., 2000) assesses the inherent

geometry of data residing on a manifold. With

the exception of using a different distance

matrix, this technique is quite similar to MDS.

In contrast to straight-line Euclidean

geodesics, IsoMap approximates manifold

distances by building a discrete neighborhood

graph G and then estimating the manifold

geodesic distances using the graph distances

(length of shortest paths computed using

Dijkstra's algorithm, for example):

s(W)ij = dG(vi, vj).

To create representations that maintain these

graph geodesic distances, IsoMAP use the

cMDS method. When data is specified on a

Riemannian manifold, for example, IsoMAP

may handle distances that do not always

originate in a Euclidean metric space, in

contrast to cMDS. Unfortunately, computing

all pairs of shortest route lengths in the

neighborhood graph makes it computationally

costly.

Locally Linear Embedding Another non-linear

dimension reduction approach, sparse matrix

operations (LLE) (Roweis and Saul, 2000)

improves upon IsoMap's computational

complexity and was developed about the same

time. The local geometry of manifolds is the

basis of LLE, which differs from IsoMAP,

ij

which uses geodesics to maintain the global
geometry of manifolds. LLE assumes that

manifolds are almost linear when examined

locally. Linear patch augmentation (LPE) is

based on the principle of approximating points

using linear combinations of embeddings in

their immediate surroundings. The optimal

non-linear embedding is then determined by

comparing these small neighborhoods on a

global scale.

Laplacian Eigenmaps Among the non-linear

dimensionality reduction strategies, LE

(Belkin and Niyogi, 2002) aims to maintain

local distances. Important structural

information about graphs may be captured by

spectral features of the graph Laplacianmatrix.

Specifically, the "smoothest" function is the

constant eigenvector that corresponds to the

eigenvalue zero, and it is defined on the graph

vertices. The eigenvectors of the graph

Laplacian provide the foundation for these

functions. Expanding upon this understanding,

LE is a method for reducing dimensions that is

not linear. Before representing nodes in the

networks using the Laplacian's eigenvectors

that correspond to lesser eigenvalues, LE

builds a graph from datapoints, such as a k-NN

or ε-neighborhood graph. Due to the

"smoothness" of Laplacian's eigenvectors with

small eigenvalues, nearby points on the

manifold (or graph) will have comparable

representations. This is the high-level idea for

LE. The generalized eigenvector problem is

the formal basis for LE learning embeddings:
term using our notations:

Σ

d1(W, Ŵ) = W i j Ŵi j

Ŵ i j = d2(Zi, Zj) = ||Zi − Zj||
2.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Therefore, LE learns

embeddings such that the

Euclidean distance in the

embedding space is small

2

for points that are close on
the manifold.

4.1.2 DISTANCE-BASED:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

NON-EUCLIDEAN METHODS

It was previously supposed that embeddings

are learnt in a Euclidean space via the

distance-based approaches that were outlined.

Since graphs are discrete data structures that

do not conform to the standard Euclidean

geometry, there have been a number of

proposals to study graph embeddings into non-

Euclidean spaces rather than traditional

geometry. One such space is the hyperbolic

one; it is ideal for representing hierarchical

data due to its non-Euclidean geometry and

continuous negative curvature.

For simplicity's sake, imagine hyperbolic

space as a continuous tree model, with

geodesics (the generalization of shortest routes

on manifolds) behaving similarly to shortest

paths in discrete tree models. In hyperbolic

space, the volume of a ball increases at an

exponential rate as its radius does, much as the

number of nodes in a tree increases at an

exponential rate as their distance from the root

does. Hyperbolic space, on the other hand,

offers more "room" to accommodate

complicated hierarchies and compress

representations, as this volume expansion is

only polynomial in Euclidean space.

Specifically, unlike in Euclidean space,

hyperbolic embeddings may embed trees with

arbitrarily low distortion in just two

dimensions (Sarkar, 2011). Since hyperbolic

geometry permits embeddings with far less

distortion, it provides an intriguing alternative

to Euclidean geometry for graphs exhibiting

hierarchical patterns, and hyperbolic space is

therefore an obvious choice for embedding

data resembling trees.

Hyperbolic geometry has a long history of

usage in network science research prior to its

incorporation into machine learning

applications. Using spanning trees, Kleinberg

(2007) suggested a greedy technique for

geometric roots that does greedy geographic

routing after mapping sensor network nodes to

hyperbolic plane coordinates. Studying the

structural aspects of complex networks—

networks having non-trivial topological

features used to mimic real-world systems—

has also made use of hyperbolic geometry. In

2010, Krioukov et al. established a geometric

framework for building scale-free networks,

which are a class of complex networks

characterized by power-law degree

distributions. They also proved that every

scale-free graph exhibiting metric structure

has, at its core, hyperbolic geometry. A

popularity-similarity (PS) framework for

modeling the development and expansion of

complicated networks was proposed by

Papadopoulos et al. (2012). Using their radial

coordinates in hyperbolic space and their

angular coordinates, popular nodes and similar

nodes are likely to be linked in this model.

Moreover, this structure has been used to

transform graph nodes into hyperbolic

coordinates by increasing the probability that

the network is generated by the PS model

(Papadopoulos et al., 2014). Additional

research has improved graph-to-hyperbolic-

coordinate mapping efficiency using non-

linear dimensionality reduction methods as

LLE (Belkin and Niyogi, 2002; Alanis-Lobato

et al., 2016; Muscoloni et al., 2017).

More recently, there has been interest in learning

hyperbolic representations of hierar- chical graphs or

trees, via gradient-based optimization. We review

some of these machine learning-based algorithms

next.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Poin ca r é embeddings

Nickel and Kiela (2017)

learn embeddings of

hierarchical graphs such as

lexical databases (e.g.

WordNet) in the Poincar é

model hyperbolic space.
d2(Zi, Zj) =

Using our notations, this

approach learns hyperbolic

embeddings via the

Poincar é distance

function:

dPoincar´e(Zi, Zj) ||Zi − Zj||2

= arcosh 1 + 2 2 .

2 (1 − ||Zi||
2)(21 − ||Zj||

2)

Embeddings are thenlearned

by minimizing distances

between

Σ

connected nodes while

max- imizing distances

between disconnected

nodes:

d1(W, Ŵ) = −
Σ

ij

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Wijlog
e − Ŵi j

k|W =0 e
− Ŵi k

ik

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

= − Wijlog Softmaxk|Wik =0(−Wij),

where the denominator is

approximated using

negative sampling. Note

that since the hyper- bolic

space has a manifold

structure, embeddings need

to be optimized using

Riemannian optimization

techniques (Bonnabel,

2013) to ensure that they

remain on the manifold.

Other variants of these

methods have been

proposed. In particular,

Nickel and Kiela (2018)

explore a different model of

hyperbolic space, namely

the Lorentz model (also

 ̂

ij

known as the hyperboloid

model), and show that it

provides better numerical

stability than the Poincar é

model. Another line of

work extends non-

Euclidean embeddings to

mixed- curvature product

spaces (Gu et al., 2018),

which provide more

flexibility for other types of

graphs (e.g. ring of trees).

Finally, Chamberlain et al.

(2017) extend Poincar é

embeddings to incorporate

skip-gram losses using

hyperbolic inner products.

4.1.3 OUTER PRODUCT-BASED:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

MATRIX FACTORIZATION METHODS

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Matrix factorization
approaches learn
embeddings that lead to a
low rank representation of
some similarity matrix s(W
), where s : R|V |×|V | → R|V
|×|V | is a transformation of
the weighted adjacency
matrix, and many methods
set it to the identity, i.e. s(W
) = W . Other
transformations include the
Laplacian matrix or more
complex similarities
derived from proximity
measures such as the Katz
Index, Common
Neighbours or Adamic
Adar. The decoderfunction
in matrix factorization
methods is a simple outer
product:

Ŵ =

DEC(Z;

ΘD) =

ZZT.

(3)

F LG,REG(W,
W ; Θ) =

||s(W) − W ||2 .

(4)

That is, d1(·, ·) in Eq. (1)
is the Frobenius norm
between the reconstructed
matrix and the target
similarity matrix. By
minimizing the
regularization loss, graph
factorization methods learn
low-rank representations
that preserve structural
information as defined by
the similarity matrix s(W).
We now review important
matrix factorization
methods.

Graph factorization

(G
F) (Ahmed et al., 2013)

learns a low-rank

factorization for the

adjacency matrix by

Matrix factorization methods

learn embeddings by

minimizing the regularization
loss in Eq. (1) with:

minimizing graph

regularization loss in Eq.

^ ^ (1) using:

(vi,vj)∈E

Σ
d1(W, Ŵ) =

Recall that A is binary
adjacency matrix, with Aij
= 1 iif (vi, vj) ∈ E. We can
express the graph
regularization loss in
terms of Frobenius norm:

(Wij − Ŵ i j)2.

operator. Therefore, GF
also learns a low- rank
factorization of the
adjacency matrix W
measured in Frobenuis
norm. Note that the sum is
only over existing edges in

LG,REG(W, ̂W ; Θ) = ||A · (W − Ŵ) || 2 ,

where · is the element-wise
matrix multiplication

the graph, which reduces
tFhe computational
complexity of this method
from O(|V |2) to O(|E|).

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Graph representation

with global structure

information (GraRep)

(Cao et al., 2015) The

methods described so far

are all symmetric, that is,

the similarity score

between two nodes (vi, vj) is

the same a the score of (vj,

vi). This might be a limiting

assumption when working

with directed graphs as

some nodes can be strongly

connected in one direction

and disconnected in the

otherdirection. GraRep

overcomes this limitation

by learning two

embeddings per node, a

source embedding Zs and a

target embedding Zt, which

capture asymmetric

proximity in directed

networks. GraRep learns

embeddings that preserve

k- hop neighborhoods via

powers of the adjacency

and minimizes the graph

regularization loss with:
T

for each 1 ≤ k ≤ K. GraRep
concatenates all
representations to get

—1 source embeddings Zs =
[Z(1),s| . . . |Z(K),s] and
target embeddings Zt =
[Z(1),t| . . . |Z(K),t]. Finally,
note that GraRep is not
very scalable as the
powers of D W might be
dense matrices.

HOPE (Ou et al., 2016)

Similar to GraRep, HOPE

learns asymmetric

embeddings but uses a

different similarity

measure. The distance

function in HOPE is

simply the Frobenius

norm and the similarity

matrix is a high-order

proximity matrix (e.g.

Adamic-Adar):

TŴ = ZsZt

^ LG , RE G (̂WF, W ; Θ) = ||s(W) − W ||2 .

The similarity matrix in

HOPE is computed with

sparse matrices, making

this method more efficient

and scalable than GraRep.

Ŵ (k) = Z(k),sZ(k),t

LG,REG(W, Ŵ (k) ; Θ) = ||D—kWk − Ŵ (k) | |2 , F

4.1.4 OUTER PRODUCT-BASED:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

SKIP-GRAM METHODS

Skip-gram graph

embedding models were

inspired by efficient NLP

methods modeling prob-

ability distributions over

words for learning word

embeddings (Mikolov etal.,

2013; Pen- nington et al.,

2014). Skip-gram word

embeddings are optimized

to predict context words,

from (Godec, 2018).

L = −
—K≤i≤K,i/=0

Figure 5: An overview

of the pipeline for random-

walk graph

embedding methods.

Reprinted with permission

or surrounding words, for

each target word in a

sentence. Given asequence

of words (w1, . . .

, wT), skip-gram will

minimize the objective:

Σ
log P(wk—i|wk),

for each target words wk. In practice, the conditional trains neural networks by maximizing the probability of probabilities

can be estimated using neural networks, and predicting context nodes for each target node in a graph, skip-gram methods

can be trained efficiently using negative namely nodes that are close to the target node in terms of sampling. Perozzi et

al. (2014) empirically show the hops and graph proximity. For this purpose, node frequency statistics induced by

random walks also follow embeddings are decoded into probability distributions over Zipf’s law, thus motivating the

development of skip-gram nodes using row-normalization of the decoded matrix with graph embedding methods. These

methods exploit random softmax.

walks on graphs and produce node sequences that are To train embeddings, DeepWalk generates sequences of similar

in positional distribution, as to words in sentences. nodes using truncated unbiased random walks on the In skip-

gram graph embedding methods, the decoder graph—which can be compared to sentences in natural

function is also an outer product (Eq. (3)) and the graph language models—and then maximize their log-likelihood.

regularization term is computed over random walks on the Each random walk starts with a node vi1 ∈ V and

graph. repeatedly sample next node at uniform: vij+1 ∈ {v ∈ V

DeepWalk (Perozzi et al., 2014) was the first attempt to | (vij , v) ∈ E}. The walk length is a hyperparameter. All generalize

skip-gram models to graph-structured data. generated random-walk can then be passed to an NLP- DeepWalk draws

analogies between graphs and language. embedding algorithm e.g. word2vec’s Skipgram model. Specif- ically, writing a

sentence is analogous to performing This two-step paradigm introduced by Perozzi et al. (2014)a random walk, where

the sequence of nodes visited during is followed by many subsequent works, such as node2vec the walk, is treated as the

words of the sentence. DeepWalk (Grover and Leskovec, 2016).

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

We note that is common for underlying implementations to choice is studied further in (Abu-El-Haija et al., 2017).
use two distinct represen- tations for each node (one for if s(W) = Eq D—1W

q
, then training DeepWalk is

when a node is center of a truncated random walk, and one equivalent to minimizing:
when it is in the context). The implications of ̂t h i s modeling
where C = i j e x p (WQi j)Σi s a normalizing constant.

Notethat computing C requires s
^
u m - ming over all

nodes in the graph which is computationally expensive.
DeepWalk overcomes this issue by using a technique
called hierarchical softmax, which computes C

efficiently using binary trees. Finally, note that by

computing truncated random walks on the graph,

DeepWalk embeddings capture high-order node

proximity.

node2vec (Grover and Leskovec, 2016) is a random-

walk based approach for unsuper- vised network

embedding, that extends DeepWalk’s sampling

strategy. The authors in- troduce a technique to generate

biased random walks on the graph, by combining graph

exploration through breadth first search (BFS) and

through depth first search (DFS).Intu- itively, node2vec

also preserves high order proximities in the graph but the

balance between BFS and DFS allows node2vec

embeddings to capture local structures in the graph, as

well as global community structures, which can lead to

more informative embeddings. Finally, note that

negative sampling (Mikolov et al., 2013) is used to

approximate the normalization factor C in Eq. (5).

Watch Your Step (WYS) (Abu-El-Haija et al., 2018)

Random walk methods are very sensitive to the

sampling strategy used to generate random walks. For

instance, some graphs may require shorter walks if local

information is more informative that global graph

structure, while in other graphs, global structure might

be more important. Both Deep- Walk and node2vec

sampling strategies use hyper-parameters to control this,

such as the length of the walk or ratio between breadth

and depth exploration. Optimizing over these hyper-

parameters through grid search can be computationally

expensive and can lead to sub-optimal embeddings.

WYS learns such random walk hyper-parameters to

minimize the overall objective (in analogy: each graph

gets to choose its own preferred “context size”,such that

the probability of predicting random walks is

maximized). WYS shows that, when viewed in

expectation, these hyperparameters only correspond in the

objective to co- efficients to the powers of the adjacency

matrix (Wk)1≤k≤K. These coefficients are denoted q =

(qk)1≤k≤K and are learned through back-propagation.

Should q’s learn a left-skewed distribution, then the

embedding would prioritize local information and right-

skewed distri- bution will enhance high-order

relationships and graph global structure. This concept

has been extended to other forms of attention to the ‘graph

context’, such using a personalized context distributions

for each node (Huang et al., 2020).

Large scale Information Network Embedding

(LINE) (Tang et al., 2015) learns embeddings that

preserve first and second order proximity. To learn

first order proximity preserving embeddings, LINE

minimizes the graph regularization loss:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Intuitively, LINE with
second-order proximity
decodes embeddings into
context conditional
distributions for each
node p2(·|vi). Note that
optimizing the second-
order objective is
computationally expensive
as it requires asum over
the entire set ofedges.
LINE uses negative
sampling to sample negative
edges according to some
noisy distribution over
edges. Finally, as in
GraRep, LINE combines
first and second order
embeddings with
concatenation Z =
[Z(1)|Z(1)].

Hierarchical

representation learning
for networks (HARP)
(Chen et al., 2018b) Both
node2vec and DeepWalk
learn node embeddings by
minimizing non-convex
functions, which can lead to
local minimas. HARP
introduces a strategy that
computes initial embed-
dings, leading to more
stable training and
convergence. More
precisely, HARP
hierarchi- cally reduces the
number of nodes in the graph

via graph coarsening. Nodes
are iteratively grouped into
super nodes that form a
graph with similar
properties as the original
graph, leading to multiple
graphs with decreasing
size (G1, . . . , GT). Node
embeddings are then
learned for each coarsened
graph using existing
methods such as LINE or
DeepWalk, and at time-
step t, embeddings learned
for Gt are used as initialized
embedding for the random
walk algorithm on Gt—1.
This process is repeated
until each node isembedded
in the orig- inal graph. The
authors show that this
hierarchical embedding

strategy
produces stable
embeddings that capture
macroscopic graph
information.

Splitter (Epasto and

Perozzi, 2019) What if a

node is not the correct ‘base

unit’ of anal- ysis for a

graph? Unlike HARP,

which coarsens a graph to

preserve high-level

topological

Figure 6: Auto-encoder methods. The graph structure (stored as the graph adjacency

ma- trix) is encoded and reconstructed using encoder-decoder networks. Models are
trained by optimizing the graph regularization loss computed on the reconstructed

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

features, Splitter is a graph

embedding approach

designed to better model

nodes which have

membership in multiple

communities. It uses the

Persona decomposition

(Epasto et al., 2017), to

create a derived graph, GP

which may have multiple

persona nodes for each

original node in G (the

edges of each original node

are divided among its

personas). GP can then be

embedded (with some

constraints) using any of

the embedding methods

discussed so far. The

resulting representations

allow persona nodes to be

separated in the embedding

space, and the authors show

benefits to this on link

prediction tasks.

Matrix view of Skip-

gram methods As noted

by Levy and Goldberg

(2014), Skip- grammethods

can be viewed as matrix

factorization, and the

methods discussed hereare

related to those of Matrix

Factorization

(Section 4.1.3). This

relationship is discussed in

depth by Qiu et al. (2018),

who propose a general

matrix factorization

framework, NetMF, which

uses the same underlying

graph proximity

information as DeepWalk,

LINE, and node2vec.

Casting the node

embedding problem as

matrix factorization can

offer benefits like easier

algorithmic analysis (e.g.,

convergence guarantees to

unique globally-optimal

points), and dense matrix

undergoing decomposition

can be sampled entry-wise

(Qiu et al., 2019).

6.2 Auto-encoders

Shallow embedding

methods hardly capture

non-linear complex

structures that might arise

in graphs. Graph auto-

encoders were originally

introduced to overcome

this issue by us- ing deep

neural network encoder and

decoder functions, due to

their ability model non-

linearities. Instead of

exploiting the graph

structure through the graph

regularization term, auto-

encoders directly

incorporate the graph

adjacency matrix in the

encoder function. Auto-

encoders generally have an

encoding and decoding

network which are multiple

layers of non-linear layers.

For graph auto-encoders,

the encoder function has

the form:

Z = ENC(W ; ΘE).

That is, the encoder is a

function of the adjacency

matrix W only. These

models are trained by

minimizing a

reconstruction error

objective and we review

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

2

examples of such
objectives next.

Structural Deep

Network Embedding
(SDNE) (Wang et al.,
2016) learns auto-
encoders that preserve
first and second-order
node proximity (Section
2.1). The SDNE encoder
takes as input a node
vector: a row of the

adjacency matrix as they
explicitly set s(W) = W ,
and produces node
embeddings Z. The
SDNE decoder return a

reconstruc- tion Ŵ , which
is trained to recover the
original graph adjacency
matrix (Fig. 7). SDNE

Figure 7: Illustration of the SDNE model. The embedding layer (denoted Z) is
shown in green. Reprinted with permission from (Godec, 2018).

preserves second order node proximity by minimizing the graph regularization loss:

Σ

||(s(W) − Ŵ) · B||2 F + αSDNE s(W)ij||Zi − Zj|| 2,
ij

where B is the indicator matrix for s(W) with B = 1[s(W) > 0]. Note that the second
term is the regularization loss used by distance-based shallow embedding methods.

The first term is similar to the matrix factorization regularization objec t̂ive,

except that W is not computed using outer products. Instead, SDNE computes a unique
embedding for each node in the graph using a decoder network.

Deep neural Networks for learning Graph Representations (DNGR) (Cao

et al., 2016) Similar to SDNE, DNGR uses deep auto-encoders to encode and decode

a node similarity matrix, s(W). The similarity matrix is computed using a probabilistic

method called random surfing, that returns a probabilistic similarity matrix through

graph explo- ration with random walks. Therefore, DNGR captures higher-order

dependencies in the graph. The similarity matrix s(W) is then encoded and decoded

with stacked denoising auto-encoders (Vincent et al., 2010), which allows to reduce

the noise in s(W). DNGR is optimized by minimizing the reconstruction error:

LG,REG(W, ̂W; Θ) = ||s(W) − Ŵ | | 2 . F

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Σ

6.3 Graph neural networks

In graph neural networks, both the graph structure and node features are used in the encoder
function to learn structural representations of nodes:

Z = ENC(X, W; ΘE).

We first review unsupervised graph neural networks, and will cover supervised graph

neural networks in more details in Section 5.

Variational Graph Auto-Encoders (VGAE) (Kipf and Welling, 2016b) use
graph convolutions (Kipf and Welling, 2016a) to learn node embeddings Z =
GCN(W, X; ΘE) (see Section 5.3.1 for more details about graph convolutions). The
decoder is an outer product: DEC(Z; ΘD) = ZZT. The graph regularization term is
the sigmoid cross entropy between the true adjacency and the predicted edge similarity
scores:

L (W, Ŵ; Θ) = − ^ ^

G,REG (1 − Wij)log(1 − σ (Wij)) + Wijlog σ (Wij) .
ij

Computing the regularization term over all possible nodes pairs is computationally
chal- lenging in practice, and the Graph Auto Encoders (GAE) model uses negative
sampling to overcome this challenge.

Note that GAE is a deterministic model but the authors also introduce variational graph
auto-encoders (VGAE), where they use variational auto-encoders to encode and
decode the graph structure. In VGAE, the embedding Z is modelled as a latent
variable with a standard multivariate normal prior p(Z) = N (Z|0, I) and the
amortized inference network

qΦ(Z|W, X) is also a graph convolution network. VGAE is optimized by minimizing the
corresponding negative evidence lower bound:

NELBO(W, X; Θ) = −EqΦ(Z|W,X)[log p(W |Z)] + KL(qΦ(Z|W, X)||p(Z))

= LG,REG(W, W ; Θ) + KL(qΦ(Z|W, X)̂| |p(Z)) .

Iterative generative modelling of graphs (Graphite) (Grover et al., 2019) extends

GAE and VGAE by introducing a more complex decoder, which iterates between

pairwise decoding functions and graph convolutions. Formally, the graphite

decoder repeats the following iteration:

Ŵ(k) =
Z(k)Z(k)

T

||Z(k)||2

11T
+

|V |

Z(k+1) = G C N̂ (W (k), Z(k))

where Z(0) are initialized using the output of the encoder network. By using this parametric

iterative decoding process, Graphite learns more expressive decoders than other methods

based on non-parametric pairwise decoding. Finally, similar to GAE, Graphite can be

deterministic or variational.

2

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Σ Σ

Deep Graph Infomax (DGI) (Vel i č kovi ć et al., 2019) is an unsupervised graph-

level embedding method. Given one or more real (positive) graphs, each with its

adjacency
matrix W ∈ R|V |×|V | and node features X ∈ R|V |×d0 , this method creates fake (negative)
adjacency matrices W — ∈ R|V −|×|V −| and their features X— ∈ R|V −|×d0 . It trains (i) an
encoder that processes real and fake samples, respectively giving Z = ENC(X, W ;
ΘE) ∈ R|V |×d and Z— = ENC(X—, W —; ΘE) ∈ R|V |×d, (ii) a (readout) graph
pooling function R : R|V |×d → Rd, and (iii) a descriminator function D : Rd × Rd → [0,
1] which is trained to output D(Zi, R(Z)) ≈ 1 and D(Z—, R(Z—)) ≈ 0, respectively,
for nodes correspondjing to given graph i ∈ V and fake graph j ∈ V —. Specifically,
DGI optimizes:

|V | |V −|
— —

min − E log D(Zi, R(Z)) −
−
E

−
log 1 − D (Zj , R(Z)) , (6)

Θ X,W i=1 X ,W j=1

Figure 8: Unsupervised graph neural networks. Graph structure and input features are

mapped to low-dimensional embeddings using a graph neural network encoder.

Embeddings are then decoded to compute a graph regularization loss (unsupervised).

where Θ contains ΘE and the parameters of R, D. In the first expectation, DGI
samples from the real
(positive) graphs. If only
one graph is given, it could
sample some subgraphs
from it (e.g. connected
components). The second
expectation samples fake
(negative) graphs. InDGI,
fake samples exhibit the
real adjacency W — := W
but fake featuresX— are a
row-wise random
permutation of real X,
though other negative

sampling
strategies are plausible.
The ENC used in DGI isa
graph convolutional
network, though any GNN

can be used. The readout
R summarizes an entire
(variable-size) graph to a
single (fixed- dimension)
vector. Vel i č kovi ć et al.
(2019) use R as a row-wise
mean, though other graph
pooling might be used e.g.
ones aware of the
adjacency, R : R|V |×d × R|V
|×|V | → Rd.

The optimization (Eq.

(6)) is shown by

Ve l i ˇc ko vi´c et al. (2019) to

maximize a lower- bound

on the Mutual Information

(MI) between the outputs of

the encoder and the graph

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

pooling function. In other

words, it maximizes the MI

between individual node

representa- tions and the

graph representation.

Graphical Mutual

Information (GMI, Peng et

al., 2020) presents another

MI alternative: rather than

maximizing MI of node

information and an entire

graph, GMI maximizes the

MI between the

representation of a node

and its neighbors.

6.4 Summary of unsupervised

embedding methods

This section presented a

number of unsupervised

embedding methods.

Specifically, the only

supervision signal is the

graph itself, but no labels

for nodes or the graph are

processed by these

methods.

Some of these methods
(Sec. 4.1) are shallow, and
ignore the node features X
even if they exist. These
shallow methods program
the encoder as a “look-up
table”, parametrizing it by
matrix ∈ R|V |×d, where each
row stores d-dimensional
embedding vector for a
node. These methods are
applicable to transductive
tasks where is only one
graph: it stays fixed
between training and
inference.

Auto-encoder methods (Sec. 4.2) are
deeper, though they still ignore node
feature matrix

X. These are feed-forward neural
networks where the network input is the
adjacency matrix

W . These methods are better

suited when new nodes

are expected atinference

test time. Finally, Graph

neural networks (Sec.

4.3) are deep methods

that process both the

adja-

cency W and node features X. These
methods are inductive, and are generally
empericially
outperform the above two

classes, for node-

classification tasks,

especially when nodes have

features. For all these

unsupervised methods, the

model output on the entire

graph is ∈ R|V |×|V | that the

objective function

encourages to well-predict

the adjacency W or its

transformation s(W). As

such, these models can

compute latent

representations of nodes

that trained to reconstruct

the graph structure. This

latent representation can

subsequently be used for

tasks at hand, including,

link prediction, node

classification, or graph

classification.

7. Supervised Graph

Embedding

A common approach for

supervised network

embedding is to use an

unsupervised network

embedding method, like the

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

ones described in Section 4

to first map nodes to an

embedding vector space,

and then use the learned

embeddings as input for

another neural network.

However, an important

limitation with this two-

step approach is that the

unsupervised node

embeddings might not

preserve important

properties of graphs (e.g.

node labels or attributes),

that could have been useful

for a downstream

supervised task.

Recently, methods

combining these two steps,

namely learning embeddings

and predict- ing node or

graph labels, have been

proposed. We describe

these methods next.

7.1 Shallow embedding methods

Similar to unsupervised

shallow embedding
methods, supervised

shallow embedding meth-

ods use embedding look-ups

to map nodes to embeddings.

However, while the goal in

unsupervised shallow

embeddings is to learn a

good graph representation,

2002) is a very popular

algorithm for graph-based

semi-supervised node

classification. It directly

learns embeddings in the

label space, i.e. the

supervised decoder

function in LP is simply

the identity function:

yˆN = DEC(Z; ΘC) = Z.

In particular, LP uses the

graph structure to smooth the

label distribution over the

graph by adding a

regularization term to the

loss function, where the

underlying assumption is

that neighbor nodes should

have similar labels (i.e. there

exist some label consistency

between connected nodes).

The regularization in LP is

computed with Laplacian

eigenmaps:

LG,REG(
ij

i j 2 W, Ŵ ; Θ)
Σ

=

W i j Ŵi j

(7)

where

supervised shal- low

embedding methods aim at

doing well on some

downstream prediction task

such as node or graph

classification.

LP minimizes this energy function over the space of functions that take fixed values on

Label propagation (LP)

(Zhu and Ghahramani,

Ŵij =

||yˆN −

yˆN

||2.

(8)

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

i,

labelled nodes (i.e. yˆN = yN ∀i|vi ∈

VL) using an iterative algorithm that

updates a i i
unlabelled node’s label distribution via
the weighted average of its neighbors’
labels.

There exists variants of

this algorithm such as

Label Spreading (LS)

(Zhou et al., SPECTRUM-
FREE METHODS

ric, in the sense that the parameters in ij

Fl

We now cover spectrum-free

methods, which approximate

convolutions in the spectral

do- main overcoming

computational limitations

of SCNNs by avoiding

explicit computation of the

Laplacian’s

eigendecomposition.

SCNNs filters are neither

localized nor paramet-

in Eq. (17) are all free. To overcome this

issue, sprectrum-free

methods use polynomial

expansions to approximate

where Pl (·) is a finite

degree
ij

polynomial.

Therefore, the total number
of free parameters per filter
depends on the
polynomial’s degree,
which is independent of the
graph size. Assuming all
eigenvectors are kept in Eq.
(16), it can be rewritten as:

ij

F l = Pl (Λ)
j

spectral filters in Eq. (16)
via:

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Attention mechanisms

(Vaswani et al., 2017) have

been successfully used in

language mod- els, and are

particularly useful when

operating on long sequence

inputs, they allow models

to identify relevant parts of

the inputs. Similar ideas

have been applied to graph

convolution networks.

Graph attention-based

models learn to pay

attention to important

neighbors dur- ing the

message passing step. This

provides more flexibility in

inductive settings,

compared to methods that

rely on fixed weights such

as GCNs.

Broadly speaking,

attention methods learn

neighbors’ importance

using parametric func-

tions whose inputs are node

features at the previous

layer. Using GCF, we can

abstract patch functions in

attention-based methods as

functions of the form:

ƒk(W, Hl) = α(W · gk(Hl)),
where · indicates element-
wise multiplication and α(·)
is an activation function such
as softmax or ReLU.

Graph Attention

Networks (GAT)

(Vel i č kovi ć et al., 2018)

is an attention-based ver-

sion of GCNs, which

incorporate self-attention

mechanisms when

computing patches. At

every layer, GAT attends

over the neighborhood of
T ealch node and learns to

selectively pick nodes

which lead to the best

performance for some

downstream task. Thehigh-

level intuition is similar to

SAGE (Hamilton et al.,

2017a) and makes GAT

suitable for induc- tive and

transductive problems.

However, instead of

limiting the convolution

step to fixed size-

neighborhoods as in

SAGE, GAT allows each

node to attend over the

entirety of its neighbors and

uses attention to assign

different weights to different

nodes in a neighborhood.

The attention parameters are

trained through

backpropagation, and the

GAT self-attention

mechanism is:

gk(Hl) =

LeakyReLU(Hl
BTb0

where ⊕ indicates
summation of row and
column vectors with
broadcasting, and (b0, b1)and
B are trainable attention
weight vectors and weight

T

⊕ b1 BH)

matrix respectively. Theedge
scores are then row
normalized with softmax. In
practice, the authors propose
to use multi-headed attention
and combine the propagated

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

signals with a concatenation
of the average operator
followed by some activation
function. GAT can be
implemented efficiently by
computing the self-attention
scores in parallel across
edges, as well as computing
the output representations in
parallel across nodes.

Mixture Model Networks

(MoNet) Monti et al.

(2017) provide a general

framework that works

particularly well when the

node features lie in multiple

domains such as 3D point

clouds or meshes. MoNet

can be interpreted as an

attention method as itlearns

patches using parametric

functions in a pre-defined

spatial domain (e.g. spatial

coordinates), and then

applies convolution filters

in the graph domain.

Note that MoNet is a

generalization of previous

spatial approaches such as

Geodesic CNN (GCNN)

(Masci et al., 2015) and

Anisotropic CNN (ACNN)

(Boscaini et al., 2016),

which both introduced

constructions for

convolution layers on

manifolds. However, both

GCNN and ACNN use

fixed patches that are

defined on a specific

coordinate system and

therefore cannot generalize

to graph-structured data.

The MoNet framework is

more gen- eral; any pseudo-

coordinates such as local

graph features (e.g. vertex

degree) or manifold

features (e.g. 3D spatial

coordinates) can be used to

compute the patches. More

specifi- cally, if Us are

pseudo-coordinates and Hl

are features from another

domain, then using GCF,

the MoNet layer can be

expressed as:

Hl+1 = σ
K

k=1

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

(W · gk(Us))HlΘl , k

where · is element-wise s

(23)

1 s T —1 s

multiplication and gk(Us) g (U) = exp − (U − µ) Σ (U − µ) ,

are the learned param
k

etric
patches, which are |V |×|V |
matrices. In practice,
MoNet uses Gaussian
kernels to learn patches,
such that:

2 k k

where µk and Σk are learned

parameters, and Monti etal.

(2017) restrict Σk to be a

diagonal matrix.

(a) GCN layers. (b) HGCN layers.

Figure 13: Euclidean (left) and hyperbolic (right) embeddings of a tree graph.

Hyperbolic embeddings learn natural hierarchies in the embedding space (depth

indicated by color). Reprinted with permission from (Chami et al., 2019).

7.2 Non-Euclidean Graph
Convolutions

Hyperbolic shallow

embeddings enable

embeddings of hierarchical

graphs with smaller dis-

tortion than Euclidean

embeddings. However, one

major downside of shallow

embeddings is that they are

inherently transductive and

cannot generalize to new

graphs. On the other hand,

Graph Neural Networks,

which leverage node

features, have achievedstate-

of-the-art performance on

inductive graph embedding

tasks.

Recently, there has been

interest in extending Graph

Neural Networks to learn

non- Euclidean embeddings

and thus benefit from both

the expressiveness of Graph

Neural Networks and

hyperbolic geometry. One

major challenge in doing so

is how to perform

convolutions in a non-

Euclidean space, where

standard operations such as

inner products and matrix

multiplications are not

defined.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Hyperbolic Graph

Convolutional Neural

Networks (HGCN)

(Chami et al., 2019) and

Hyperbolic Graph Neural

Networks (HGNN) (Liu et

al., 2019) apply graph

convolutions in hyperbolic

space by leveraging the

Euclidean tangent space,

which provides a first-order

approximation of the

hyperbolic manifold at a

point. For every graph

convolution step, node

embeddings are mapped to

the Euclidean tangent space

at the origin, where

convolutions are applied,

and then mapped back to

the hyperbolic space.

These approaches yield

significant improvements

on graphs that exhibit

hierarchical structure (Fig.

13).

7.3 Summary of supervized

graph embedding

This section presented a

number of methods that

process task labels (e.g.,

node or graph labels) at

training time. As such,model

parameters are directly

optimized on the upstream

task.

Shallow methods use

neither node features X nor

adjacency W in the encoder

(Section 5.1), but utilize the

adjacency to ensure

consistency. Such methods

are useful in transductive

settings, if only one graph

is given, without node

features, a fraction of nodes

are labeled, and the goal is

to recover labels for

unlabeled nodes.

8. Applications

9. Many different kinds of

applications, both supervised and

unsupervised, may benefit from

graph representation learning

techniques. When learning

embeddings in an unsupervised

setting, task-specific labels are

not processed. Instead, the graph

serves as a tool for self-

monitoring. Using unsupervised

embedding techniques (Section4,

top branch of the Taxonomy in

Fig. 3), one may learn

embeddings that preserve the

network (i.e. neighborhoods) or

the structural equivalence of

nodes (for distinction, see

Section 2.2.3). Alternatively, in

supervised applications, such as

graph or node classification, the

optimization of node

embeddings is done directly for a

particular job. Section 5, the

bottom branch of the Taxonomy

in Figure 3, describes supervised

embedding approaches that may

be used in this context. Here are

a few of the most common GRL

jobs and the methods used to do

them, as shown in Table 5. What

follows is a rundown of typical

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

supervised and unsupervised

graph uses.

9.1 Unsupervised applications

9.1.1 GRAPH RECONSTRUCTION

10. Graph reconstruction is the

gold standard for unsupervised

graph applications. The objective

here is to train mapping functions

(parametric or not) that retain

graph features like node

similarity while mapping nodes

to dense distributed

representations. By reducing a

reconstruction error—the error in

retrieving the original graph from

learnt embeddings—models may

be trained, and graph

reconstruction doesn't need any

supervision. For some instances

of reconstruction aims, see

Section 4, and to learn about the

techniques used for this purpose,

see Section 5. Similar to

dimensionality reduction, the

overarching objective of graph

reconstruction is to combine

incoming data into a low-

dimensional representation.

Graph reconstruction models aim

to compress data specified on

graphs into low-dimensional

vectors, rather than the usual way

of reducing dimensionality (e.g.,

principal component analysis)

which involves converting high-

dimensional vectors into low-
dimensional ones.

10.1.1 LINK PREDICTION

11. The goal of link prediction

is to forecast which edges in a

graph will eventually take a

certain path. To rephrase, link

prediction tasks aim to anticipate

the appearance of linkages that

have not yet been detected, such

as links that might emerge in the

future for networks that are both

dynamic and temporal.

Furthermore, malicious linksmay

be located and eliminated with

the use of link prediction.

Common examples of this kind

of application are

recommendation systems that

utilize graph learning models to

forecast the interactions between

users and products and social

networks that use these models to

forecast the friendships between

users.

12.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Method
Training complexity

Training
input

Memory Computation

(a) DeepWalk (Perozzi, 2014) O(|V |d) O(c2d|V |log2 |V |)

W

(b) node2vec (Grover, 2016) O(|V |d) O(c2d|V |)

LINE (Tang, 2015)
(c) HOPE (Ou,

2016) GF
(Ahmed, 2013)

O(|V |d) O(|E|d)

(d)
SDNE (Wang,
2016) DNGR
(Cao, 2016)

O(|V |bD) O(|V |bM)

(e)
GraRep (Cao, 2015)

WYS (Abu-el-haija, 2018)
O(|V |2) O(|V |3c + |V |2d)

(f) HARP (Chen, 2018) inherits W

(g) Splitter (Epasto, 2019) inherits W

(h) MDS (Kruskal, 1964) O(|V |2) O(|V |3)

X induces W (i)
LP (Zhu, 2002)

LLE (Roweis, 2000)
O(|V |) O(|E| × iters)

(j) GNN Methods O(|V |D) O(|E|D + |V |M) X, W

(k) SAGE (Hamilton, 2017) O(bFHD) O(bFH—1D + bFHM) X, W

(l) GTTF (Markowitz, 2021) O(bFHD) O(bFH—1D + bFHM) X, W

Summarization and real-world applications of

GRL techniques (Table 5). The columns

running from right to left show the following:

method classes, the hardware cost to train the

method, and real cases where the methods

have been useful: inputs to the methods, which

may be either an adjacency matrix (W) or node

characteristics (X), or both. This is how we get

the Training Complexity. In the method

classes (a-h), "c" represents the size of the

context (such as the length of a random walk)

and "d" the size of the embedding dictionary;

both are parameters of node embedding

techniques. The embedding dictionary isstored

in (a) DeepWalk and (b) node2vec, with(V d)

floating-point entries. During training, a

predetermined number of walks with a defined

duration are simulated from every node V.

Along these walks, the dot products of all

node-pairs within a window of size c are

computed. Both the hierarchical softmax (a)

and the negative sampling (b) are applied to

every pair. To see the complexity per batch,

just replace the two V terms on the left with

batch size b. But to keep things simple, we

look at it per period. (c) All edges are cycled

through by LINE (Tang, 2015), HOPE (Ou,

2016), and GF (Ahmed, 2013). (d) The

adjacency matrix is used to train auto-

encoders via SDNE and DNGR, with batch-

size b, and the total dimensions of all layers

denoted by A dA. To handle floating-point

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

operations in matrix multiplications, the

formula = A dAdA+1 is used. With full-batch,

b equals V. (e) GraRep and WYS store a dense

square matrix with (V 2) non-zero elements,

and they elevate the transition matrix to the

power of c. Their complexity is algorithm-

specific since (f) HARP (Chen, 2018) and (g)

Splitter can execute any algorithm, for

example, (a-e). In this case, we assume that

both the average number of persons per node

for Splitter and the number of times HARP is

activated (the graph's scales) are minimal (V).

(h) While LE necessitates the entire

eigendecomposition of the graph laplacian

matrix (to get the eigenvectors corresponding

to the fewest eigenvalues), MDS calculates

all-pairs similarity. If the number of label

classes is small, (i) LP and LLE will loop over

edges up to "iters" iterations. (j) include GCN,

GAT, MixHop, GIN, GGNN, MPNN,

ChebNet, and MoNet graph convolution

algorithms (Kipf, 2016; Defferrard, 2016;

Abu-el-haija, 2019; Xu, 2018; Li, 2015;
Gilmer, 2017; Xu, 2018; Xu, 2018; Monti,

2017). The creators of those techniques gave a

full-batch implementation, which we presume

is naïve. After adding up all of the floating-

point operations performed by its neighbors (a

total of E floats), each node in a given layer

multiplies that total by the layer filter (a total

of V floats). Lastly, sampling approaches such

as (k-l) enable learning to scale to bigger

networks by reducing the hardware required of

the training algorithm and separating memory

complexity from graph size. (k) For each node

in the batch (with a size of b), (l) GTTF

samples F nodes, and for each node's

neighbors, F as well. This continues until the

tree height reaches H. We disregard the

runtime complexity of data pre-processing for

(k) and (l) since it has to be calculated only

once per graph, independent of the number of

(hyperparameter) sweep computations. A

common approach for training link prediction

models is to mask some edges in the graph (positive

and negative edges), train a model with the

remaining edges and then test it on the masked set

of edges. Note that link prediction is different from

graph reconstruction. In link prediction, we aim at

predicting links that are not observed in the original

graph while in graph reconstruction, we only want

to compute embeddings that preserve the graph

structure through reconstruction errorminimization.

Finally, while link

prediction has similarities

with supervised tasks in the

sense that we have labels

for edges (positive,

negative, unobserved), we

group it under the

unsupervised class of

applications since edge

labels are usually not used

during training, but only

used to measure the

predictive quality of

embeddings. That is,

models described in

Section 4 can be applied to

the link prediction

problem.

12.1.1 CLUSTERING

13. The discovery of

communities is one of the

numerous real-world

applications of clustering. For

example, clusters may be seen in

biological networks (as

collections of proteins with

shared characteristics) or social

networks (as associations of

individuals with same interests).

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Keep in mind that clustering

issues may be solved using the

unsupervised approaches

discussed in this review. For

example, one might apply a

clustering algorithm, such as k-

means, to embeddings that are

produced by an encoder. Another

option is to include clustering

into the learning process while

using a shallow or Graph

Convolution embedding model

(Rozemberczki et al., 2019;

Chiang et al., 2019; Chen et al.,

2019a).

13.1.1 VISUALIZATION

14. For visualizing graphs,

there are several ready-made

tools that map nodes onto two-

dimensional manifolds. Network

scientists are able to get a

qualitative understanding of

graph characteristics, node

interactions, and node clusters

via the use of visualizations.

Force-Directed Layouts-based

approaches with different web-

app Javascript implementations

are among the popular tools. To

achieve this visualization, onecan

use an unsupervised graph

embedding method such as t-

distributed stochastic neighbor

embeddings (t-SNE) or principal

component analysis (PCA) after

training an encoder-decoder

model (which is equivalent to a

shallow embedding or graph

convolution network) (Maaten

and Hinton, 2008; Jolliffe, 2011).

Graph learning techniques are

often evaluated qualitatively

using this approach (embedding

→ dimensionality reduction). To

color the nodes in 2D

visualization plots, one may

utilize their characteristics if the

nodes have any. As seen in visual

representations of different

approaches, good embedding

algorithms place nodes in the

embedding space that have

comparable properties close

together (Perozzi et al., 2014;

Kipf and Welling, 2016a; Abu-

El-Haija et al., 2018). To

conclude, approaches that map

every graph to a representation

may also be projected into two

dimensions to display and

qualitatively assess graph-level

features, in addition to mapping

every node to a 2D coordinate

(Al-Rfou et al., 2019).

14.1 Supervised applications

14.1.1 NODE CLASSIFICATION

15. An essential supervised

graph application is node

classification, which aims to

develop representations of nodes

that can reliably predict their

labels. In citation networks, node

labels may represent scientific

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

subjects; in social networks, they

might represent gender and other

characteristics. One typical use

case is semi-supervised node

classification due to the high cost

and time commitment associated

with labeling huge graphs. The

objective in semi-supervised

situations is to use node linkages

to predict characteristics of

unlabeled nodes, with just asmall

percentage of nodes being

tagged. Since there is a single

partly labeled fixed graph in this

context, it is considered

transductive. Inductive node

classification is another option;

this is the process of determining

how to categorize nodes in

different networks.

Keep in mind that if the node

attributes are descriptive of the

goal label, they may greatly

improve performance on

classified nodes jobs. In fact, by

integrating structural data with

semantic information derived

from features, state-of-the-art

performance on multiple node

classification benchmarks has

been attained by more recent

approaches as GCN (Kipf and

Welling, 2016a) or GraphSAGE

(Hamilton et al., 2017a).

However, other approaches, such

random walks on graphs, do not

take use of feature information

and so perform worse on these

tasks.

15.1.1 GRAPH CLASSIFICATION

16. One example of a

supervised application is graph

classification, the goal of which

is to use an input graph to predict

labels at the graph level. Due to

the constant introduction of

novel graphs during testing,

graph classification problems are

fundamentally inductive.

Biochemical activities and online

social networks are also common

choices. Graphs representing

molecules are often used in the

biological field. A feature vector

that is a 1-hot encoding of an

atom's number may serve as a

node in these graphs, and a bond

can be represented by an edge

between two nodes, with the kind

of the bond being indicated by

the feature vector. One example

of a task-dependent graph-level

label is MUTANG, which

indicates the mutagenicity of a

medicine against bacteria

(Debnath et al., 1991). Typically,

people are represented as nodes

in online social networks, while

connections or interactions are

symbolized by edges. As an

example, there are a lot of graphs

in the Reddit graph classification

jobs (Yanardag and

Vishwanathan, 2015). An edge

will link two nodes in a graph

that represents a conversation

thread, such as when one person

comments on another's remark.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

Given a comment graph, the

objective is to identify the

community (sub-reddit) where

the conversation occurred.While

tasks such as nodeclassification

and edge prediction include

pooling at the node and edge

levels, respectively, graph

classification tasks need a

different kind of pooling to

aggregate data at the node and

graph levels. As said before,

expanding this concept ofpooling

to any kind of graph is a

challenging and ongoing topic of

study. Node order shouldn't

affect the pooling function. For

example, several approaches use

basic pooling, including taking

the mean or total of all latent

vectors at the node level in the

network (Xu et al., 2018). Ying

et al., 2018b; Cangea et al., 2018;

Gao and Ji, 2019; Lee et al., 2019

are among the approaches that

employ differentiable pooling.

Tsitsulin et al. (2018a), Al-Rfou

et al. (2019), and Tsitsulin et al.

(2020a) all provide supervised

approaches for learning graph-

level representations, but there

are also many unsupervised

methods. Some unsupervised

graph-level models that stand out

include reviewed by

Viswanathan et al. (2010) and

Kriege et al. (2020) as graph

kernels (GKs).

Although GKs are not our primary concern,

we do touch on their links to GRAPHEDM

here. Graph-level tasks, such graph

categorization, are suitable for GKs. In order

to convert any two graphs into a scalar, GK

may automatically apply a similarity function.

Counting the number of walks (or pathways)

that two graphs have in common is one way

that traditional GKs calculate graph similarity.

For example, each walk may be stored as a

series of node labels. Common practice

dictates using node degrees as labels in the

absence of explicit labels. The capacity ofGKs

to identify (sub-)graph isomorphism is a

common metric for analysis. When ordering of

nodes is ignored, two (sub-)graphs are

considered isomorphic if they are identical.

According to the 1-dimensional Weisfeiler-

Leman (1-WL) heuristic, two sub-graphs are

considered isomorphic since sub-graph

isomorphism is NP-hard. In each graph,

histograms are used to tally the statistics of the

nodes (e.g., how many nodes with the label

"A" have an edge to nodes with the label "B").

If two graphs' histograms, obtained from the

same 1-hop neighborhood, are equal, then the

graphs are considered isomorphic according to

the 1-WL heuristic. An example of a GNN that

has been shown to achieve the 1-WL heuristic

is the Graph Isomorphism Network (GIN; Xu

et al., 2018). This means that GIN can only

map two graphs to the same latent vector if

they are considered isomorphic according to

the 1-WL heuristic. In some newer studies,

GKs and GNNs are used together. Using the

similarity of the "tangent space" of the goal

with respect to the Gaussian-initialized GNN

parameters, Du et al. (2019) models the

similarity of two graphs, and Chen et al.

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

(2020) extracts walk patterns. There isn't any

GNN training in either (Du et al., 2019; Chen

et al., 2020). Instead, kernel support vector

machines and other kernelized algorithms are

used to the pairwise Gram matrix during

training. Therefore, our GCF and

GRAPHEDM frameworks are not well-suited

to include these methodologies. However,

there are other approaches that don't rely on

indirectly computing graph-to-graph

similarity scalar scores but instead directly

map graphs to high-dimensional latent spaces.

One example is Morris et al.'s (2019) k-GNN

network, which is deliberately coded as a

GNN but can actually implement the k-WL

heuristic (which is identical to 1-WL but

where histograms are produced up-to k-hop

neighbors). Therefore, our GCF and

GRAPHEDM frameworks can define the k-

GNN model classes.

Conclusion and Open Research Directions
We presented a standard method for comparing ML

models trained on graph-structured data in this survey.
Deep graph embedding techniques, graph auto-encoders,
graph regularization techniques, and graph neural
networks are all included in our expanded GRAPHEDM
framework, which was before used for unsupervised
network embedding. Additionally, we presented a graph
convolution framework (GCF) for describing and
comparing graph neural networks that rely on
convolution, such as spatial and spectral graph
convolutions in particular. We included more than 30
supervised and unsupervised techniques for graph
embedding in our exhaustive taxonomy of GRL methods,
which we presented using this framework.
With any luck, the results of this poll will inspire further
GRL research, which should lead to solutions for the
problems these models are experiencing right now. The
taxonomy is very useful for practitioners since it helps
them understand the many tools and applications
available and makes it easy to choose the right technique
for each situation. Furthermore, academics who have just
published Researchers may use the taxonomy to organize

their inquiries, locate relevant literature, establish
reliable baselines for comparison, and choose suitable
methods for data analysis.
Although GRL approaches have shown to be very
effective in node classification and link prediction, there
are still several issues that need to be addressed. We
then go on to talk about the difficulties and future
prospects of graph embedding models in terms of
research.

Evaluation and benchmarks

Standard benchmarks for node classification

or link prediction are usually used to evaluate

the approaches presented in this review. To

illustrate the point, graph embedding

techniques are often evaluated against citation

networks. The findings may differ greatly

depending on the datasets' splits or training

processes (such as early halting), which is a

problem with these tiny citation benchmarks,

as shown in recent research (Shchur et al.,

2018).

Using strong and consistent evaluation

methodologies, as well as expanding the scope

of assessment beyond small node

categorization and link prediction

benchmarks, is crucial for the improvement of

GRL approaches. New graph benchmarks

with leaderboards (Hu et al., 2020; Dwivedi et

al., 2020) and graph embedding libraries (Fey

and Lenssen, 2019; Wang et al., 2019; Goyal

and Ferrara, 2018a) are examples of recent

development in this approach. Similarly, in

order to test GNNs' reasoning skills, Sinha et

al. (2020) suggested a series of exercises based

on first-order logic.

Fairness in Graph Learning To prevent

models from correlating'sensitive' characteristics with
the model's predicted output, a new area called
Fairness in Machine Learning is developing (Mehrabi
et al., 2019). Considering the association of the graph

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

structure (the edges) and the feature vectors of the
nodes with the final output, these considerations might

be particularly significant for graph learning

challenges.

Bose and Hamilton (2019) state that adversarial

learning is the most prevalent method for

implementing fairness requirements in models. This

method may be used to GRL in order to debias the

model's predictions with respect to the sensitive

feature(s). But there are no certain assurances on the

precise amount of bias eliminated using adversarial

approaches. The debiasing job itself may be difficult

to accomplish with several debiasing strategies(Gonen

and Goldberg, 2019). Provable guarantees for

debiasing GRL have been the focus of recent work in

the field (Palowitch and Perozzi, 2019).

Application to large and realistic graphs
Graph learning techniques are typically reserved for

datasets of tens of thousands to hundreds of thousands

of nodes. Still, there are far bigger graphs in the actual
world, with billions of nodes. A Distributed Systems

configuration with several computers, like

MapReduce, is necessary for methods that scale for

big graphs (Lerer et al., 2019; Ying et al., 2018a)

(Dean and Ghemawat, 2008). Is there a way for a

researcher to use a home computer to apply a learning

approach to a very big graph that fits on a single hard

drive (e.g., with a one terabyte size) but does not fit on

RAM? See how this stacks up against a computer

vision challenge using a large picture collection (Deng

et al., 2009; Kuznetsova et al., 2020). Any model that

can fit on RAM can be trained on personal computers,

regardless of the size of the dataset. Graph embedding

models, in particular those whose parameters grow in

size as the graph's nodes do, may find this issue very

difficult to solve.

Even picking the right graph to utilize as input might

be challenging at times in business. The Google

system Grale, which learns the right graph from

several characteristics, is described by Halcrow et al.

(2020). For graph learning on massive datasets, Grale

uses similarity search methods (such as locality

sensitive hashing). A recent study by Rozemberczki et

al. (2021) adds an attention network to the Grale

model, enabling end-to-end learning.

We anticipate that learning algorithms for big graphs

that are still executable on a single computer will

present new mathematical and practical problems. We

are hopeful that scholars would prioritize this area so

that non-expert practitioners, like a neurology

researcher, may access and use these learning methods

to evaluate the human brain's sub-graph, which is

comprised of neurons and synapses represented as

nodes and edges.

Molecule generation Learning on graphs

has a great potential for helping molecular

scientists to reduce cost and time in the

laboratory. Researchers proposed

methods for predicting quantumproperties

of molecules (Gilmer et al., 2017;

Duvenaud et al., 2015) and for generating

molecules with some desired properties (Liu

et al., 2018; De Cao and Kipf, 2018; Li et

al., 2018; Simonovsky and Komodakis,

2018; You et al., 2018). A review of recent

methods can be found in (Elton et al., 2019).

Many of these methodsare concerned with

manufacturing materials with certain

properties (e.g. conductance and

malleability), and others are concerned drug

design (Jin et al., 2018; Ragoza et al.,

2017; Feng et al., 2018).
Combinatorial optimization

Numerous fields encounter computationally

challenging challenges, such as routing

science, cryptography, decision-making, and

planning. Computationally hard problems are

those for which the techniques used to find the

best solution have poor scalability. We cite

(Bengio et al., 2018) for a summary of the

ways that have recently attracted attention in

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

solving combinatorial optimization issues by

using machine learning approaches, such as

reinforcement learning.

Recently, there has been interest in using

graph embeddings to approximate solutions to

NP-hard problems (Khalil et al., 2017; Nowak

et al., 2017; Selsam et al., 2018; Prates et al.,

2019). Graphs are a natural representation for

many hard issues, such as SAT and vertex

cover; in fact, many problems may be

described in terms of graphs. These techniques

use a data-driven approach to solving

computationally difficult issues, such as

determining whether a specific instance (e.g.,

node) is part of the best solution from among

many instances of the problem. Find

assignments that strive to accomplish a goal

(e.g., the minimal conductance cut) in other

works that optimize graph partitions (Bianchi

et al., 2020; Tsitsulin et al., 2020b). All

of these methods use GNNs as their starting

point since GNNs, thanks to their relational

inductive biases, can better depict graphs than

regular neural networks (e.g. permutation

invariance). Current solutions still outperform

these data-driven approaches,but GNNs have

shown promise in generalizing to bigger

problem cases (Nowak et al., 2017; Prates et

al., 2019). Lamb et al. (2020) provides a

comprehensive overview of GNN- based

approaches to combinatorial optimization in

their latest study on neural symbolic learning.

Non-Euclidean embeddings The underlying space

geometry is an important part of graph embeddings, as
we saw in Sections 4.1.2 and 5.6. All graphs are
discrete complex, non-Euclidean structures with high
dimensions; however, there is currently no simple
method for encoding such data into embeddings with

low dimensions that maintain the graph topology

(Bronstein et al., 2017). Hyperbolic and mixed-

product space embeddings are two examples of non-

Euclidean embeddings that have recently attracted

attention and made strides in the field of learning (Gu

et al., 2018; Nickel and Kiela, 2017). In comparison to

their Euclidean counterparts, these non-Euclidean

embeddings have the potential for embeddings that are

more expressive. For example, compared to Euclidean

embeddings, hyperbolic embeddings exhibit

significantly less distortion when representing

hierarchical data (Sarkar, 2011). This has led to state-

of-the-art outcomes in numerous contemporary

applications, including linguistics tasks (Tifrea et al.,

2018; Le et al., 2019) and knowledge graph link

prediction (Balazevic et al., 2019; Chami et al., 2020).

Non-Euclidean embeddings often bring two difficulties:

first, hyperbolic space precision problems (e.g., at the

Poincar'e ball boundary) (Sala et al., 2018; Yu and De Sa,

2019), and second, difficult Riemannian optimization

(Bonnabel, 2013; Becigneul and Ganea, 2018).

Furthermore, it is not apparent how to choose the

appropriate shape for an input graph. An intriguing area for

future research is the process of selecting or learning the

appropriate geometry for a specific discrete graph, even

though there are already discrete measures for the graphs'

tree-likeliness, such as Gromov's four-point condition

(Jonckheere et al., 2008; Abu-Ata and Dragan, 2016; Chen

et al., 2013; Adcock et al., 2013).

Assurances based on theory Recent developments in graph

embedding model design have outperformed state-of-the-

art methods in several domains. Nevertheless, our

knowledge of the theoretical promises and constraints of

graph embedding models is currently restricted. Xu et al.

(2018), Verma and Zhang (2019), Morris et al. (2019), and

Garg et al. (2020) all apply current findings from learning

theory to the issue of GRL, which is a new field of study

on GNN representational power. If we want to know what

the theoretical benefits and drawbacks of graph embedding

techniques are, we need to build theoretical frameworks.

References

By Feodor F. Dragan and Muad Abu-Ata.
Structures resembling metric trees in actual

Journal of Management & Entrepreneurship
ISSN 2229-5348

UGC Care Group I Journal
Vol-11 Issue-1 June 2022

networks: a research investigation. In:

Networks, 2016; 67(1): 49–68.

Brian Perozzi, Sami Abu-El-Haija, and Rami

Al-Rfou. Improving edge representations via

low-rank asymmetric projections. Page 1787–

1796 of the 2017 ACM Conference on

Information and Knowledge Management

(CIKM '17) proceedings.With contributions

from Bryan Perozzi, Alexander A. Alemi,

Sami Abu-El-Haija, and Rami Al-Rfou. Be

cautious: Finding node embeddings via

observing graphs. Page numbers 9180–9190

from the 2018 edition of Advances in Neural

Information Processing Systems. Participants:

Aram Galstyan, Bryan Perozzi, Bryan

Harutyunyan, Nazanin Alipourfard, Kristina

Lerman, Greg Ver Steeg, and Amol Kapoor.

Mixhop is a method for building higher-order

graph convolutional networks by combining

sparse neighborhoods. Page numbers 21–29

from the 2019 International Conference on

Machine Learning.

Blair D. Sullivan, Michael W. Mahoney, and

Aaron B. Adcock. Big social and information

networks have a tree-like structure. Volume

13, Issue 1, Pages 1–10, 2013 IEEE

International Conference on Data Mining.

2013, IEEE. Vanja Josifovski, Alexan-der J.

Smola, Nino Shervashidze, Shravan

Narayanamurthy, and Amr Ahmed composed

the team. Organic graph factorization on a

distributed, massive scale. Included in the

proceedings of the 22nd international

conference on the World Wide Web, pages 37-

48. IEEE, 2013. Everyone from Rami Al-Rfou

to Dustin Zelle and Bryan Perozzi were

involved. Ddgk: Deep divergence graph

kernels represented by learned graphs. W3C

2019 Conference Proceedings on the World

Wide Web, 2019.

By Miguel A. Andrade-Navarro, Pablo Mier,

and Gregorio Alanis-Lobato. Efficiently

incorporating complicated networks into

hyperbolic space using their Laplacian?

Submitted to the journal Scientific Reports on

2016-03-08.Almeida, Luis B. A com-

binatorial learning rule for asynchronous

perceptrons with feedback. Volume 2, pages

609-618, Proceedings of the First International

Conference on Neural Networks. 1987, IEEE.

Alan Allen, Ivana Balazevic, and Timothy

Hospedales... "Multi-relational Poincaré

graph embeddings" Pages 4463–4473 of the

2019 edition of Advances in Neural

Information Processing Systems.Matt Lai,

Danilo Jimenez Rezende, Peter Battaglia,

Razvan Pascanu, and others. Connected

systems for acquiring knowledge of physical

phenomena, relationships, and objects. Page

numbers 4502-4510 from the 2016 edition of

Advances in Neural Information Processing

Systems. Regarding relational inductive

biases, deep learning, and graph networks, the

following authors are involved: Peter W.

Battaglia, Jessica B. Hamrick, Victor Bapst,

Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea

Tacchetti, David Raposo, Adam Santoro,

Ryan Faulkner, and others. 2018 arXiv

preprint arXiv:1806.01261, published here.

