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Abstract 

Interest in graph representation learning 

(GRL) has recently skyrocketed. In general, 

there are three broad types of GRL approaches 

that have developed in response to the 

availability of labeled data. The first one is 

network embedding, which is all about 

learning relational structure representations 

without supervision. The second one is called 

graph regularized neural networks, and it uses 

graphs to teach semi-supervised learning by 

adding a regularization goal to neural network 

losses. Finally, graph neural networks are 

designed to learn differentiable functions 

across arbitrary-structured discrete topologies. 

Interestingly, however, there has been 

relatively no effort to integrate the three 

paradigms, even though these fields are 

somewhat popular. Here, we strive to connect 

graph neural networks, graph regularization, 

and network embedding. In an effort to bring 

together several separate areas of study, we 

provide a thorough taxonomy of GRL 

approaches. In particular, we suggest the 

GRAPHEDM framework, which unifies well- 

known methods for learning graph 

representations using semi-supervised (e.g., 

GraphSage, GCN, GAT) and unsupervised 

(e.g., DeepWalk, node2vec) means. We fitted 

more than thirty existing techniques into this 

framework to demonstrate GRAPHEDM's 

generalizability. We think this unified 

perspective does double duty: it lays the 

groundwork for future study in the field and 

helps us comprehend the thinking underlying 

these techniques. 

Keywords: Learning on Manifolds, Relational 

Learning, Geometric Deep Learning, and 

Network Embedding 

 

 

1. Introduction 

2. Developing representations for 

intricate structured data sets is no 

easy feat. Data defined on a 

discretized Euclidean domain is 

one kind of structured data that 

has seen a plethora of effective 

models produced in the last ten 

years. One example is the use of 

recurrent neural networks for 

modeling sequential data, like 

text or movies. These networks 

are able to collect sequential 
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information and provide efficient 

representations, as shown bytheir 

performance on machine 

translation and voice recognition 

tasks. Convolutional neural 

networks (CNNs) are another 

example; they have achieved 

remarkable performance in 

pattern recognition tasks like 

image classification and voice 

recognition by parameterizing 

neural networks according to 

structural priors like shift- 

invariance. These remarkable 

achievements have only been 

applicable to certain kinds of 

data with a straightforward 

relational structure, such as 

sequential data or data that 

follows regular patterns. Data 

is not always so regular;complex 

relationship   structures  often 

emerge,  and 

comprehending the interplay 

between objects requires data 

extraction from such systems. 

Social networks, computational 

chemistry, biology, 

recommendation systems, semi- 

supervised learning, and other 

domains make use of graphs, 

which are universal data 

structures that can represent 

complex relational data (made up 

of nodes and edges) (Gilmer et 

al., 2017; Stark et al., 2006; 

Konstas et al., 2009; Garcia and 

Bruna, 2018). Since graph 

topologies are not always 

consistent and may change 

greatly across graphs and even 

between nodes in the same graph, 

it is difficult to construct 

networks with strong structural 

priors for graph-structured data. 

Irregular graph domains are 

particularly incompatible with 

operations like convolutions. For 

example, since all of the pixels in 

an image have the same 

neighborhood structure, it is 

possible to use the same filter 

weights everywhere in the 

picture. Nevertheless, given that 

every node in a network may 

have a unique neighborhood 

structure, it is impossible to 

provide an ordering of nodes 

(Fig. 1). On top of that, non- 

Euclidean domains are not 

applicable to geometric priors 

(such as shift invariance) used in 

Euclidean convolutions (for 

instance, translations may not 

even be specified on such 

domains). 

 

3. Research into Geometric Deep 

Learning (GDL) emerged in 

response to these difficulties; 

GDL seeks to apply deeplearning 

methods to data that is not 

geometrically normal. A lot of 

people are very interested in 

using machine learning 

techniques on graph-structured 

data because of how common 

graphs are in real-world 
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applications.  Learned 

embeddings are low-dimensional 

continuous   vector 

representations of graph- 

structured data; GRL techniques 

are one such approach. 

Unsupervised GRL and 

supervised (or semi-supervised) 

GRL are the two main categories 

of GRL learning tasks. The first 

set of rules is based on the notion 

of learning low-dimensional 

Euclidean representations that 

retain the original graph 

structure. For a particular 

downstream prediction job, such 

node or graph categorization, the 

second family likewise learns 

low-dimensional Euclidean 

representations. In contrast to the 

unsupervised environment, 

whereby inputs are often graph 

structures, the supervised setting 

typically uses a variety of signals 

specified on graphs, or node 

attributes, as inputs. Whereas in 

the inductive learning scenario, 

the underlying discrete graph 

domain may change (for 

example, when predicting 

molecular attributes where each 

molecule is a graph), in the 

transductive learning context, it 

can remain stable (for example, 

when predicting user qualities in 

a huge social network). Lastly, it 

should be mentioned that the 

majority of supervised and 

unsupervised approaches learn 

representations in vector spaces 

that are based on geometry, but 

there has been a recent uptick in 

interest in non-Euclidean 

representation learning. Thiskind 

of learning attempts to acquire 

knowledge about embedding 

spaces that are not based on 

geometry, such as spherical or 

hyperbolic spaces. The primary 

goal of this researchis to use an 

embedding space that is 

continuous and similar to the 

input data's underlying discrete 

structure (for instance,hyperbolic 

space is a continuous form of 

trees; Sarkar, 2011). 

We think it is critical to 

synthesize and explain these 

techniques in one cohesive and 

understandable framework since 

the GRL field is expanding at a 

remarkable rate. This review 

aims to provide a comprehensive 

overview of representation 

learning techniques for graph- 

structured data so that readers 

may have a better understanding 

of the many ways in which deep 

learning models use graph 

structure. 

4. There are an assortment of graph 

representation learning 

questionnaires available. For a 

full review of shallow network 

embedding and auto-encoding 

approaches, there are various 

surveys that address the topic.We 

recommend (Cai et al., 2018; 
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Chen et al., 2018a; Goyal and 

Ferrara, 2018b; Hamilton et al., 

2017b; Zhang et al., 2018a) for 

this. Second, for data that is not 

Euclidean, such manifolds or 

graphs, Bronstein et al. (2017) 

provides a comprehensive 

review of deep learning methods. 

Thirdly, approaches applying 

deep learning to graphs, 

particularly graph neural 

networks, have been covered in 

many recent surveys (Battaglia et 

al., 2018; Wu et al., 2019; Zhang 

et al., 2018c; Zhou et al., 2018). 

Rather than establishing links 

across several areas of graph 

representation learning, most of 

these studies focus down on only 

one. 

We develop a general framework 

called the Graph Encoder 

Decoder Model (GRAPHEDM) 

to classify previous work into 

four main areas: (i) methods for 

shallow embedding, (ii) methods 

for auto-encoding, (iii) methods 

for graph regularization, and (iv) 

methods for graph neural 

networks (GNNs). This 

framework expands upon the 

encoder-decoder model 

proposed by Hamilton et al. 

(2017b).We also provide a Graph 

Convolution Framework (GCF) 

for describing convolution-based 

GNNs, which have shown to be 

very effective in many different 

domains. According to 

Veliˇckovi'c et al. (2018), we are 

able to examine and contrast 

several GNNs, which differ in 

their design. These GNNs range 

from those that operate in the 

Graph Fourier1 domain to those 

that use self-attention as a 

neighborhood aggregation 

function. The goal of this 

comprehensive synthesis of 

current research is to provide 

readers with a better 

understanding of the many 

graph-based learning approaches 

so that they may identify their 

similarities and differences, as 

well as their possible expansions 

and limits. However, there are 

three ways in which our survey 

differs from earlier ones: 

 
We introduce a general framework, GRAPHEDM, to 

describe a broad range of super- vised and 

unsupervised methods that operate on graph- 

structured data, namely shal- low embedding 

methods, graph regularization methods, graph auto- 

encoding methods and graph neural networks. 

Our survey is the first attempt to unify and view these 
different lines of work from the same perspective, and 

we provide a general taxonomy (Fig.3) to understand 

differences and similarities between these methods. In 

particular, this taxonomy en- 



Journal of Management & Entrepreneurship 
ISSN 2229-5348 

UGC Care Group I Journal 
Vol-11 Issue-1 June 2022 

 

 

 
 

 

(a) Grid (Euclidean). (b) Arbitrary graph (Non-Euclidean). 

Figure 1: An illustration of Euclidean vs. non-Euclidean graphs. 

 

represents more than 30 different GRL 

algorithms. To better understand the 

differences between various strategies, it is 

helpful to describe them within a thorough 

taxonomy. 

• We provide an open-source GRL library that 

contains cutting-edge GRL methods and 

crucial graph applications including link 

prediction and node categorization. You may 

find our implementation at 

https://github.com/google/gcnn-survey-paper. 

It    is    open    to    the    public. 

 

Organization of the survey Section 2 provides 

a clear statement of the issue setting for GRL 

and a review of fundamental graph concepts. 

Section 2.2.1 explains the function of node 

features in GRL and their relationship to 

supervised GRL; Section 2.2.2 differentiates 

between inductive andtransductive learning; 

Section 2.2.3.1 distinguishes between 

positional and structural embeddings; and 

Section 2.2.4distinguishes between supervised 

and unsupervised embeddings. We also define 

and 

discuss the differences between these 

important concepts in GRL. Section 3 then 

presents GRAPHEDM, a generic framework 

that may be used in inductive and transductive 

learning contexts to define supervised and 

unsupervised GRL techniques, with or without 

node characteristics. We provide a 

comprehensive taxonomy of GRL approaches 

(Fig. 3) based on GRAPHEDM, which 

incorporates more than thirty contemporary 

GRL models. We use this taxonomy to 

characterize both supervised (Section 5) and 

unsupervised (Section 4) methods. Section 6 

concludes with an overview of graph 

applications. 

 

 

5. Preliminaries 

6. Graph representation learning 

approaches attempt to address 

the generalized network 

embedding issue; for an 

overview, see Table 1. Here, we 

offer the notation used 

throughout the article. 
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6.1 Definitions 
 Notation Meaning 

 
Abbreviations 

GRL 

GRAPHED 

M 

GNN 

GCF 

Graph Representation 

Learning Graph Encoder 

Decoder Model Graph Neural 

Network 

Graph Convolution Framework 

 

 

 

 

 
Graph notation 

G = (V, E) 

vi ∈ V 
dG(·, ·) 
deg(·) 

D ∈ R|V |×|V | 

W ∈ R|V |×|V 

| W̃  ∈ R|V |×|V 
| 

A ∈ {0, 1}|V |×|V | 

L ∈ R|V |×|V | 

L˜ ∈ R|V |×|V | 

Lrw ∈ R|V |×|V | 

Graph with vertices (nodes) V and edges E 

Graph vertex 

Graph distance (length of shortest path) 

Node degree 

Diagonal degree matrix 

Graph weighted adjacency matrix 

Symmetric normalized adjacency matrix ( W̃  = D−1/2WD−1/2) 

Graph unweighted weighted adjacency matrix 

Graph unnormalized Laplacian matrix (L = D − W ) 

Graph normalized Laplacian matrix ( L˜ = I − D−1/2WD−1/2) 

Random walk normalized Laplacian (Lrw = I − D−1W ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GRAPHEDM 
notation 

d0 

X ∈ R|V |×d0 

d 

Z ∈ R|V |×d 

dl 

Hl ∈ R|V |×dÆ 

Y 
yS ∈ R|V |×|Y| 

yˆS ∈ R|V |×|Y| 

s(W ) ∈ R|V |×|V 

| Ŵ  ∈ R|V |×|V | 

ENC(·; ΘE) 

DEC(·; ΘD) 
DEC(·; ΘS) 

LS  (yS, yˆS; Θ) 
SUP 

LG,REG(W, Ŵ  ; 

Θ) 

LREG(Θ) 

d1(·, ·) 

d2(·, ·) 

|| · ||p 

|| · ||F 

Input feature dimension 

Node feature matrix 

Final embedding dimension 

Node embedding matrix 

Intermediate hidden embedding dimension at layer l 

Hidden representation at layer l 

Label space 

Graph (S = G) or node (S = N ) ground truth labels 

Predicted labels 

Target similarity or dissimilarity matrix in graph regularization 

Predicted similarity or dissimilarity matrix 

Encoder network with parameters ΘE Graph 

decoder network with parameters ΘD Label 

decoder network with parameters ΘS 

Supervised loss 

Graph regularization loss 

Parameters’ regularization loss 

Matrix distance used for to compute the graph regularization loss 

Embedding distance for distance-based decoders 

p−norm 

Frobenuis norm 

Table 1: Summary of the notation used in the paper. 
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Definition 1 (Graph). A graph G given as a pair: G 

= (V, E), comprises a set of vertices (or nodes) V = 
{v1, . . . , v|V |} connected by edges E = {e1, . . . , e|E|}, 

where each edge ek is a pair (vi, vj) with vi, vj ∈ V 

. A graph is weighted if there exist a weight function: 

w : (vi, vj) → wij that assigns weight wij to edge 

connecting nodes vi, vj ∈ V . Otherwise, we say that 

the graph is unweighted. A graph is undirected if (vi, vj) 

∈ E implies (vj, vi) ∈ E, 
i.e. the relationships are symmetric, and directed if the 

existence of edge (vi, vj) ∈ E does 

not necessarily imply (vj, vi) ∈ E. Finally, a graph can be 

homogeneous if nodes refer to one type of entity and 

edges to one relationship. It can be heterogeneous if it 

contains different 

types of nodes and edges. 
For instance, social networks are homogeneous graphs 

that can be undirected (e.g. to encode symmetric 

relations like friendship) or directed (e.g. to encode the 

relation following); weighted (e.g. co-activities) or 

unweighted. 

Definition 2 (Path). A path P is a sequence of edges 

(ui1 , ui2 ), (ui2 , ui3 ), . . . , (uik , uik+1 ) of length k. A 

path is called simple if all uij are distinct from each 

other. Otherwise, if a path visits a node more than 

once, it is said to contain a cycle. 

Definition 3 (Distance). Given two nodes (u, v) in a 

graph G, we define the distance from u to v, denoted 

dG(u, v), to be the length of the shortest path from u 

to v, or ∞ if there exist no path from u to v. 

The graph distance between two nodes is the analog of 

geodesic lengths on manifolds. 

Definition 4 (Vertex degree). The degree, deg(vi), of 

a vertex vi in an unweighted graph is the number of 

edges incident to it. Similarly, the degree of a vertex vi 

in a weighted graph is the sum of incident edges 

weights. The degree matrix D of a graph with vertex 

set V is the |V | × |V | diagonal matrix such that Dii = 

deg(vi). 

Definition 5 (Adjacency matrix). A finite graph G = 

(V, E) can be represented as a square 

|V |×|V | adjacency matrix, where the elements of the matrix 

indicate whether pairs of nodes are adjacent or not. The 

adjacency matrix is binary for unweighted graph, A ∈ 

{0, 1}|V |×|V |, and non-binary for weighted graphs W ∈ 
R|V |×|V |. Undirected graphs have symmetric ad- 

jacency  matrices,  in  which  case,  W̃   denotes 

 ̃

symmetrically-normalized adjacency matrix: 

W = D−1/2WD−1/2, where D is the degree matrix. 
Definition 6 (Laplacian). The unnormalized 

Laplacian of an u˜ndirected graph is the |V |× 

|V | matrix L = D − W. The symmetric normalized 
Laplacian is L = I − D−1/2WD−1/2. 
The random walk normalized Laplacian is the matrix 

Lrw = I − D−1W. 

The name random walk comes from the fact that D−1W 

is a stochastic transition matrix that can be interpreted as 

the transition probability matrix of a random walk onthe 

graph. The graph Laplacian is a key operator on graphs 

and can be interpreted as the analogue of the continuous 

Laplace-Beltrami operator on manifolds. Itseigenspace 

capture important properties about a graph (e.g. cut 

information often used for spectral graph clustering) but 

can also serve as a basis for smooth functions defined on 

the graph for semi-supervised learning (Belkin and 

Niyogi, 2004). The graph Laplacian is also closely 

related to the heat equation on graphs as it is the 

generator of diffusion processes on graphs and can be 

used to derive algorithms for semi- supervised learning 

on graphs (Zhou et al., 2004). 

Definition 7 (First order proximity). The first order 

proximity between two nodes vi and vj is a local 

similarity measure indicated by the edge weight wij. 

In other words, the first- order proximity captures the 

strength of an edge between node vi and node vj 

(should it exist). 

Definition 8 (Second-order proximity). The second 

order proximity between two nodes vi and vj is measures 

the similarity of their neighborhood structures. Two 

nodes in a network will have a high second-order 

proximity if they tend to share many neighbors. 

Note that there exist higher-order measures of proximity 

between nodes such as Katz Index, Adamic Adar or 

Rooted PageRank (Liben-Nowell and Kleinberg, 2007). 

These notions of node proximity are particularly 

important in network embedding as many algorithms are 

optimized to preserve some order of node proximity in 

the graph. 

 

The generalized network embedding problem 

Network embedding is the task that aims at learning a 

mapping function from a discrete graph to a continuous 

domain. Formally, given a graph G = (V, E) with 

weighted adjacency matrix W ∈ R|V |×|V |, the goal is to 

learn low-dimensional vector representations {Zi}i∈V 
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(embeddings) for nodes in the graph {vi}i∈V , such that 

important graph properties (e.g. local or global 

structure) are preserved in the embedding space. For 

instance, if two nodes have similar connections in the 

original graph, their learned vector representations 

should be close. Let Z ∈ R|V |×d denote the node2 

embedding matrix. In practice, we often want low- 

dimensional embeddings (d |V |) for scalability purposes. 

That is, network embedding can be viewed as a 

dimensionality reduction technique for graph structured 

data, where the input data is defined on a non- Euclidean, 

high-dimensional, discrete domain. 

 

NODE  FEATURES  IN  NETWORK  EMBEDDING 

Definition 9 (Vertex and edge fields). A vertex field 

is a function defined on vertices f : V → R and similarly 

an edge field is a function defined on edges: F : E → 

R. Vertex fields and edge fields can be viewedas analogs 

of scalar fields and tensor fields on manifolds. Graphs may 

have node attributes (e.g. gender or age in social 

networks; article contents for citation networks) which 

can be represented as multiple vertex fields, commonly 

referred to as node features. In this survey, we denote 

node features with X ∈ R|V |×d0 , where d0 is theinput 

feature dimension. Node features might provide useful 

information about a graph. Some network embedding 

algorithms leverage this information by learning 

mappings: 

W, X → Z. 

In other scenarios, node features might be unavailableor 

not useful for a given task: net- work embedding canbe 

featureless. That is, the goal is to learn graph 

representations via mappings: 

W → Z. 
Although we present the model taxonomy via embedding 

nodes yielding Z ∈ R|V |×d, it can also be extended for models 

that embed an entire graph i.e. with Z ∈ Rd as a d- dimensional 

vector for the whole graph (e.g. (Duvenaud et al., 2015; Al- 

Rfou et al., 2019)), or embed graph edges Z ∈ R|V |×|V |×d as a 

(potentially sparse) 3D matrix with Zu,v ∈ Rd representing the 

embedding of edge (u, v). Note that depending on whether 

node features are used or not in the embedding algorithm, 

the learned representation could capture different aspects 

about the graph. If nodes features are being used, 

embeddings could capture both structural and semantic 

graph information. On the other hand, if node features 

are not being used, embeddings will only preserve 

structural information of the graph. 
Finally, note that edge features are less common than 

node features in practice, but can also be used by 

embedding algorithms. For instance, edge features can 

be used as regularization for node embeddings (Chen et 

al., 2018c), or to compute messages from neighbors as 

in message passing networks (Gilmer et al., 2017). 

 
TRANSDUCTIVE AND INDUCTIVE NETWORK 

EMBEDDING 

Historically, a popular way of categorizing a network 
embedding method has been by whether the model can 

generalize to unseen data instances – methods are referred 
to as operating in either a transductive or inductive setting 

(Yang et al., 2016). While we do not use this concept for 
constructing our taxonomy, we include a briefdiscussion 
here for completeness. 

In transductive settings, it assumed that all nodes in the 

graph are observed in training (typically the nodes all 

come from one fixed graph). These methods are used to 

infer information about or between observed nodes in 

the graph (e.g. predicting labels for all nodes, given a 

partial labeling). For instance, if a transductive method 

is used to embed the nodes of a social network, it can be 

used to suggest new edges (e.g. friendships) between the 

nodes of the graph. One major limitation of models 

learned in transductive settings is that they fail to 

generalize to new nodes (e.g. evolving graphs) or new 

graph instances. 

On the other hand, in inductive settings, models are 

expected to generalize to new nodes, edges, or graphs 

that were not observed during training. Formally, 

given training graphs (G1, . . . , Gk), the goal is to learn 

a mapping to continuous representations that can 

generalize to unseen test graphs (Gk+1, . . . , Gk+l). For 

instance, inductive learning can be used to embed 

molecular graphs, each representing a molecule 

structure (Gilmer et al., 2017), generalizing to new 

graphs and showing error margins within chemical 

accuracy on many quantum properties. Embedding 

dynamic or temporally evolving graphs is also another 

inductive graph embedding problem. 

There is a strong connection between inductive graph 

embedding and node features (Sec- tion 2.2.1) as the latter 

are usually necessary for most inductive graph 

representation learn- ing algorithms. More concretely, node 

features can be leveraged to learn embeddings with 

parametric mappings and instead of directly optimizing the 

embeddings, one can optimize the mapping’s parameters. 

The learned mapping can then be applied to any node 

(even those that were not present a training time). On the 

other hand, when node features are not available, the first 

mapping from nodes to embeddings is usually a one-hot 

encoding which fails to generalize 
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to new graphs where the canonical node ordering is not 

available. 

Finally, we note that this categorization of graph 

embedding methods is at best an incomplete lens for 

viewing the landscape. While some models are 

inherently better suited to different tasks in practice, 

recent theoretical results (Srinivasan and Ribeiro, 2020) 

show that models previously assumed to be capable of 

only one setting (e.g. only transductive) can be used in 

both. 

POSITIONAL VS STRUCTURAL NETWORK 

EMBEDDING 

An emerging  categorization of graph  embedding 

algorithms is about whether the learned embeddings are 

positional or structural. Position-aware embeddings 

capture global relative positions of nodes in a graph and 

it is common to refer to embeddings as positional if they 

can be used to approximately reconstruct the edges inthe 

graph, preserving distances such as shortest paths in the 

original graph (You et al., 2019). Examples of positional 

embedding algorithms include random walk or matrix 

factorization methods. On the other hand, structure-aware 

embeddings capture local structural information about 

nodes in a graph, i.e. nodes with similar node features or 

similar structural roles in a network should have similar 

embeddings, regardless of how far they are in the original 

graph. For instance, GNNsusually learn embeddings by 

incorporating information for each node’s neighborhood, 

and the learned representations are thus structure-aware. 

In the past, positional embeddings have commonly been 

used for unsupervised tasks where positional information is 

valuable (e.g. link prediction or clustering) while structural 

embeddings have been used for supervised tasks(e.g. node 

classification or whole graph classification). More recently, 

there has been attempts to bridge the gap between 

positional and structural representations, with positional 

GNNs (You et al., 2019) and theoretical frameworks 

showing the equivalence between the two classes of 

embeddings (Srinivasan and Ribeiro, 2020). 
UNSUPERVISED AND SUPERVISED NETWORK 

EMBEDDING 

Depending on whether extra information like 

node or graph labels is supplied, network 

embedding may be either supervised or 

unsupervised. The former case involves using 

simply the graph structure and, in certain 

cases, node attributes. Optimization of a 

reconstruction loss—a measure of the learnt 

embeddings' ability to mimic the original 

graph—is often used in unsupervised network 

embedding with the objective of learning 

embeddings that retain the graph structure.The 

objective of supervised network embedding is 

to improve models for aparticular job, such 

graph or node classification, and to train 

embeddings for a specific purpose, like 

predicting graph or nodeproperties. In Section 

3, we go into further depth on the distinctions 

between supervised and unsupervised 

approaches, and we utilize the amount of 

supervision to construct our taxonomy. 

A Taxonomy of Graph Embedding 

Models 
We first describe our proposed framework,GRAPHEDM, 

a general framework for GRL (Sec- tion 3.1). In 

particular, GRAPHEDM is general enough that it can be 

used to succinctly de- scribe over thirty GRL methods 

(both unsupervised and supervised). We use 

GRAPHEDM to introduce a comprehensive taxonomy in 

Section 3.2 and Section 3.3, which summarizes exiting 

works with shared notations and simple block diagrams, 

making it easier to under- stand similarities and 

differences between GRL methods. 

 

The GraphEDM framework 

The GRAPHEDM framework builds on top of the work of 

Hamilton et al. (2017b), which describes unsupervised 

network embedding methods from an encoder-decoder 

perspective. 
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Figure 2: Illustration of the GRAPHEDM framework. Based on the supervision 

available, methods will use some or all of the branches. In particular, unsupervised 

methods do not leverage label decoding for training and only optimize the similarity or 

dissimilarity decoder (lower branch). On the other hand, semi-supervised and supervised 

methods leverage the additional supervision to learn models’ parameters (upper 

branch). 

 

Cruz et al. (2019) also recently proposed a modular 

encoder-based framework to describe and compare 

unsupervised graph embedding methods. Different from 

these unsupervised frameworks, we provide a more 

general framework which additionally encapsulates 

super- vised graph embedding methods, including ones 

utilizing the graph as a regularizer (e.g. Zhu and 

Ghahramani (2002))E, and graph neural networks such as 

ones based on message passing (Gilmer et al., 2017; 

Scarselli et al., 2009) or graph convolutions (Bruna et 

al., 2014; Kipf and Welling, 2016a). 

Input The GRAPHEDM framework takes as input an 

undirected weighted graph G = (V, E), with adjacency 

matrix W ∈ R|V |×|V |, and optional node 

features X ∈ R|V |×d0 . In (semi-)supervised settings, we 

assume that we are given training target labels for 

nodes (denoted N ), edges (denoted E), and/or for the 

entire graph (denoted G). We denote the supervision 

signal as S ∈ {N, E, G}, as presented below. 
Model The GRAPHEDM framework can be 

decomposed as follows: 

Graph encoder network ENCΘE : R|V |×|V | × R|V |×d0 

→ R|V |×d, parameterized by Θ , which combines the 

graph structure with node features (or not) to produce 

node embedding matrix Z ∈ R|V |×d as: 

Z = ENC(W, X; ΘE). 

As we shall see next, this node embedding matrix might 

capture different graph prop- erties depending on the 

supervision used for training. 
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Graph decoder network DECΘD : R|V |×d → R|V |×|V |, 

parameterized by ΘD, which uses the node embeddings 

Z to compute similarity or dissimilarity scores for all noydEe 

pairs, producing a matrix Ŵ  ∈ R|V |×|V | as: 

Ŵ = DEC(Z; ΘD). 

Classification network DECΘS : R|V |×d → R|V |×|Y|, 

where Y is the label space. This network is used in 

(semi-)supervised settings and parameterized by Θ . 

The output is a distribution over the labels yˆS , using 

labels). 

|V | ×E|dV  g| e-level supervision, with  ̂ ∈ Y , where 
Y represents the edge label 

space. For example, Y can be multinomial in 

knowledge graphs (for describing the 

types of relationships between two entities), setting 

Y = {0, 1}#(relation types). It iSs common to have 

#(relation types) = 1, and this is is known as link 
nomenclature and position link prediction as an 

node embeddings, as: 
yS = DEC(Z; ΘS). 

^ unsupervised task (Section 4). Then in lieu of yE we 
utilize W , the output of the graph decoder network 

 ̂
(which is learned to reconstruct a target similarity or 

dissimilarity matrix) to rank potential edges. 
Our GRAPHEDM framework is general (see Fig. 2 for 

an illustration). Specific choices of the aforementionedyG 

(encoder and decoder) networks allows GRAPHEDM to 

realize specific graph embedding methods. Before 

presenting the taxonomy and showing realizations of 

various methods using our framework, we briefly 

discuss an application perspective. 

 

Output The GRAPHEDM model can return a 

reconstructed graph similarity or dissim- 

ilarity matrix Ŵ  (often used to train unsupervised 

embedding algorithms), as well as a 
output labels yS for superv^ised applications. The label 

output space Y varies depending on the supervised 
application. 

 

Node-level supervision, with yN ∈ Y|V |, where^ Y 

represents the node label space. If Y is categorical, then 

this is also known as (semi-)supervised node 

classification (Section 6.2.1), in which case the label 

decoder network produces labels for each node in the 

graph. If the embedding dimensions d is such that d = 

|Y|, then the label decoder network can be just a simple 

softmax activation across the rows of Z, produc- 

ing a distribution over labels for each node. 

Additionally, the graph decoder network might also be 

used in supervised node-classification tasks, as it can be 

used to regu- larize embeddings (e.g. neighbor nodes 

should have nearby embeddings, regardless of node 
{ΘE, ΘD, ΘS} denote all model parameters. ing a 

combination of the following loss terms: 

Supervised loss term, LS  ,  which  compares  the 

 

Graph-level supervision, with ^ ∈ Y, where Y is the 

graph label space. In 

the graph classification task (Section 6.2.2), the label 

decoder network converts node 

embeddings into a single graph labels, using graph 

pooling via the graph edges captured by W . More 

concretely, the graph pooling operation is similar to 

pooling in standard CNNs, where the goal is to 

downsample local feature representations to capture 

higher- level information. However, unlike images, 

graphs don’t have a regular grid structure and it is hard 

to define a pooling pattern which could be applied to 

every node in the graph. A possible way of doing so is 

via graph coarsening, which groups similar nodes into 

clusters to produce smaller graphs (Defferrard et al., 

2016). There exist other pooling methods on graphs such 

as DiffPool (Ying et al., 2018b) or SortPooling (Zhang 

et al., 2018b) which creates an ordering of nodesbased on 

their structural roles in the graph. Details aboutgraph 

pooling operators is outside the scope of this workand we 

refer the reader to recent surveys (Wu et al., 2019) for a 

more in-depth treatment. 

Taxonomy of objective functions 
We now focus our attention on the optimization of models 

that can be described in the 

GRAPHEDM framework by describing the loss 

functions used for training. Let Θ = 

 

GRAPHEDM models can be optimized us- 

 

 

supervised node classification tasks (S = N ), the graph 

predicted labels yˆS to the ground SUP vertices are split into labelled and unlabelled nodes (V 
 

truth labels yS. This term depends on the task the 

model is being trained for. For instance, in semi- 

= VL 𝖴 VU ), and the supervised loss is computed for 

each labelled node in the graph: 

^ 
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REG 

 

 

L (yN , yˆN ; Θ) = 
Σ l(yN , yˆN ; Θ), 

N 

 

 
where l(·) is the loss function used for classification (e.g. 

cross-entropy). Similarly for graph classification tasks 
(S = G), the supervised loss is computed at the graph- 

Graph regularization loss term, LG,REG, which 
leverages the graph structure to impose regularization 

constraints on the model parameters. This loss term acts 
as a smoothing term and measures the distance between 

the decoded similarity or d̂issim- ilarity matrix W , and 
a target similarity or dissimilarity matrix s(W 

), which might capture higher-order proximities than 

the adjacency matrix itself: 

LG,REG(W, Ŵ; Θ) = d1(s(W ), Ŵ ) ,  (1) 

where d1(·, ·) is a distance or dissimilarity function. 

Examples for such regularization are constraining 

neighboring nodes to share similar embeddings, in terms 

of their dis- tance in L2 norm. We will cover more 

examples of regularization functions in Section 4 and 

Section 5. 

Weight regularization loss term, LREG, e.g. for 

representing prior, on trainable model parameters for 

reducing overfitting. The most commonregularization 

is L2 regularization (assumes a standard Gaussian 

prior): 

i i 

i|vi∈VL 

level and can be summed across multiple training 

graphs: 

two-step learning algorithm might lead to sub-optimal 

performances for the supervised task, and in general, 

supervised methods (Section 5) outperform two-step 

approaches. 

 

Taxonomy of encoders 
Having introduced all the building blocks of the 

GRAPHEDM framework, we now introduce our graph 

embedding taxonomy. While most methods we 

describe next fall under the GRAPHEDM framework, 

they will significantly differ based on the encoder used 

to produce the node embeddings, and the loss function 

used to learn model parameters. We divide graph 

embedding models into four main categories: 

Shallow embedding methods, where the encoder 

function is a simple embedding lookup. That is, the 

parameters of the model ΘE are directly used as node 

embed- dings: 

Z = ENC(ΘE) 

= ΘE ∈ R|V |×d. 

L (Θ) = 
Σ 

||θ||2. Note that shallow embedding methods rely on an 
θ∈Θ embedd2ing lookup and are therefore transductive, i.e. 

 

Finally, models realizable by GRAPHEDM framework 
are trained by minimizing the total loss L defined as: 
S S  ̂

they generally cannot be directly applied in inductive 
settings where the graph structure is not fixed. 
Graph regularization methods, where the encoder 

 

L = αLSUP(y  , yˆ ; Θ) + βL 

γLREG(Θ), (2) 

S 
G,REG (W, W ; Θ) + network ignores the graph structure and only uses 

node features as input: 

where α, β and γ are hyper-parameters, that can be tuned 

or set to zero. Note that graph embedding methods can 
Z = ENC(X; ΘE). 
As its name suggests, graph regularization methods 

be trained in a supervised (α /= 0) or unsupervised (α = leverage the graph structure through the graph 

0) fashion. 

Supervised graph embedding approaches leverage an 

additional source of information to learn embeddings such 

as node or graph labels. On the other hand, unsupervised 

network embedding approaches rely on the graph structure 

only to learn node embeddings. 

A common approach to solve supervised embedding 

problems is to first learn embeddings with an 

unsupervised method (Section 4) and then train a 

regularization loss term in Eq. (2) (β /= 0) to regularize 

node embeddings. 

supervised model on the learned embeddings. However, as 

pointed by Weston et al. (2008) and others, using a 
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Graph auto-encoding methods, where the 

encoder is a function of the graph structure only: 

Z = ENC(W ; ΘE). 

Neighborhood aggregation methods, including 

graph convolutional methods, where both the node 

features and the graph structure are used in the 

encoder network. Neighborhood aggregation 

methods use the graph structure to propagate 

information across nodes and learn embeddings 

that encode structural properties about the graph: 
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Z = ENC(W, X; ΘE). 

 

 

Historical Context 

There is a general two-step process that most 

machine learning models adhere to. Initially, 

they forego the need of human feature building 

in favor of automatically extracting significant 

patterns from data. According to Bengio et al. 

(2013), this is the part where representation 

learning takes place. A second step involves 

putting these representations to use in 

supervised (like classification) or 

unsupervised (like clustering, visualization, 

and nearest-neighbor search) applications 

further down the line. This task is referred to 

as downstream processing.3 

To facilitate the downstream process, a good 

data representation should be both expressive 

and concise, preserving the original data's 

significant qualities. Overfitting and other 

problems induced by the curse of 

dimensionality may be mitigated, for example, 

by using low-dimensional representations of 

high-dimensional datasets. When it comes to 

GRL, a graph encoder is used for 

representation learning, while a graph or label 

decoder is employed for jobs further down the 

line, such as node classification and link 

prediction. Graph encoder-decoder networks 

have traditionally been used for manifold 

learning. It is usual to presume that input data, 

even if it exists on a high-dimensional 

Euclidean space, is inherently contained on a 

low-dimensional manifold. The classic 

manifold hypothesis describes this. This 

inherently low-dimensional manifold is what 

manifold learning methods aim to retrieve. A 

discrete approximation of the manifold is 

often constructed initially, in the form of a 

graph with edges connecting adjacent points in 

the ambient Euclidean space. Graph distances 

are a reasonable surrogate for local and global 

manifold distances because manifolds are 

locally Euclidean. Secondly, while keeping 

graph distances as accurate as feasible, 

"flatten" this representation of the graph by 

learning a non-linear mapping from graph 

nodes to points in low-dimensional Euclidean 

space. Typically, these representations are 

more manageable compared to the initial high- 

dimensional ones, and they may subsequently 

be  used   in  subsequent   applications. 

When looking for solutions to the manifold 

learning issue, non-linear4 dimensionality 

reduction strategies were all the rage in the 

early 2000s. For example, spectral approaches 

are used by Laplacian Eigenmaps (LE) 

(Belkin and Niyogi, 2002) to calculate 

embeddings, and IsoMap (Tenenbaum et al., 

2000) to maintain global network geodesics by 

a mix of the Floyd-Warshall algorithm and the 

conventional Multi-dimensional scaling 

algorithm. In Section 4.1.1, we outline a few 

of these techniques that use shallow encoders. 

Despite their significant influence on machine 

learning, manifold dimensionality reduction 

approaches are not scalable to big datasets. 

Consider the time complexity of IsoMAP: it 

exceeds quadratic time due to the need to 

compute all pairs of shortest pathways. Since 

the mappings from node to embeddings are 

non-parametric, they cannot generate 

embeddings for additional datapoints, which is 

a potentially more significant drawback. The 

issue of graph embedding has seen several 

proposals for non-shallow network topologies 

in recent years. Our GRAPHEDM framework 

may be used to define graph neural networks 

and graph regularization networks. When 
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compared to traditional approaches, GRL 

models often provide more expressive, 

scalable, and generalizable embeddings due to 

their use of deep neural networks' 

expressiveness. 

 

 
In the next sections, we review recent methods for 

supervised and unsupervised graph embedding 

techniques using GRAPHEDM and summarize the 

proposed taxonomy in Fig. 3. 

Unsupervised Graph Embedding 

Using the taxonomy outlined earlier, we will 

now provide a summary of current methods 

for unsupervised graph embedding. Without 

using task-specific labels for the network or its 

nodes, these approaches map the graph into a 

continuous vector space, including its edges 

and/or nodes. By learning to rebuild matrices 

that measure the similarity or dissimilarity 

between nodes, such as the adjacency matrix, 

some of these approaches aim to learn 

embeddings that maintain the network 

structure. There are methods that use a 

contrastive objective. For example, one could 

compare nearby node-pairs to faraway ones: 

nodes that are co-visited in short random 

walks should have a higher similarity score 

than distant ones. Another would compare real 

graphs to fake ones: the mutual information 

between a graph and all of its nodes should be 

higher in real graphs than in fake ones. 

Shallow embedding methods 

The encoder function in shallow embedding 

techniques is a basic embedding lookup; these 

methods are transductive graph embedding 

methods. The shallow encoder function is 

simply: for every node vi in V, there is a 

corresponding low-dimensional learnable 

embedding vector Zi in Rd. 

Z = ENC(ΘE) 

= ΘE ∈ R|V |×d. 

 

The data structure in the embedding space 

matches the underlying graph structure, thanks 

to learnt node embeddings. Generally 

speaking, it's not dissimilar to principal 

component analysis (PCA) and other 

dimensionality reduction techniques;however, 

the input data may not be linear. Specifically, 

graph embedding issues may be addressed 

using techniques for non-linear dimensionality 

reduction, which often begin with constructing 

a discrete graph from the data in order to 

approximate the manifold. Wetake a look at 

the distance-based and outer product-based 

approaches to shallow graphembedding. 

 

Distance-based methods By using a preset 

distance function, these approaches maximize 

embeddings in a way that keeps points that are 

close together in the graph (as shown by their 

graph distances, for example) as near together 

in the embedding space as feasible. In a formal 

sense, the decoder network may provide either 

non-Euclidean (Section 4.1.2) or Euclidean 

(Section 4.1.1) embeddings by computing 

pairwise distance for a certain distance 

function d2: 

W 

 
^ = DEC(Z; ΘD) 

with Ŵ i j  = d2(Zi, Zj) 
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Auto-encoders 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Taxonomy of graph representation learning methods. Based on what 
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information is used in the encoder network, we categorize graph embedding approaches 

into four cat- egories: shallow embeddings, graph auto-encoders, graph-based 

regularization and graph neural networks. Note that message passing methods can also be 

viewed as spatial convo- lution, since messages are computed over local neighborhood in 

the graph domain. Recip- rocally, spatial convolutions can also be described using 

 

 
 

 

 

Figure 4: Shallow embedding methods. The encoder is a simple embedding look-up 
and the graph structure is only used in the loss function. 

 

Outer product-based methods These methods on the other hand rely on pairwise 
dot-products to compute node similarities and the decoder network can be written as: 

W = DEC(Z; ΘD) ^ 

= ZZT. 

Embeddings are then learned by minimizing the graph regularization loss: LG , R̂ EG( W, 
W ; Θ) = d̂ 1 ( s ( W ), W ). Note that for distance-based methods, the function s(·) measures 
dissimilar- ity or distances between nodes (higher values mean less similar pairs of 
nodes), while in outer-product methods, it measures some notion of similarity in the 
graph (higher values mean more similar pairs). 

 

4.1.1 DISTANCE- 

BASED: 

EUCLIDEAN METHODS 
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Isometric Mapping As a non-linear 

dimensionality reduction approach, (IsoMap) 

(Tenenbaum et al., 2000) assesses the inherent 

geometry of data residing on a manifold. With 

the exception of using a different distance 

matrix, this technique is quite similar to MDS. 

In contrast to straight-line Euclidean 

geodesics, IsoMap approximates manifold 

distances by building a discrete neighborhood 

graph G and then estimating the manifold 

geodesic distances using the graph distances 

(length of shortest paths computed using 

Dijkstra's algorithm, for example): 

 
s(W )ij = dG(vi, vj). 

 

To create representations that maintain these 

graph geodesic distances, IsoMAP use the 

cMDS method. When data is specified on a 

Riemannian manifold, for example, IsoMAP 

may handle distances that do not always 

originate in a Euclidean metric space, in 

contrast to cMDS. Unfortunately, computing 

all pairs of shortest route lengths in the 

neighborhood graph makes it computationally 

costly. 

Locally Linear Embedding Another non-linear 

dimension reduction approach, sparse matrix 

operations (LLE) (Roweis and Saul, 2000) 

improves upon IsoMap's computational 

complexity and was developed about the same 

time. The local geometry of manifolds is the 

basis of LLE, which differs from IsoMAP, 

 
ij 

which uses geodesics to maintain the global 
geometry of manifolds. LLE assumes that 

manifolds are almost linear when examined 

locally. Linear patch augmentation (LPE) is 

based on the principle of approximating points 

using linear combinations of embeddings in 

their immediate surroundings. The optimal 

non-linear embedding is then determined by 

comparing these small neighborhoods on a 

global scale. 

Laplacian Eigenmaps Among the non-linear 

dimensionality reduction strategies, LE 

(Belkin and Niyogi, 2002) aims to maintain 

local distances. Important structural 

information about graphs may be captured by 

spectral features of the graph Laplacianmatrix. 

Specifically, the "smoothest" function is the 

constant eigenvector that corresponds to the 

eigenvalue zero, and it is defined on the graph 

vertices. The eigenvectors of the graph 

Laplacian provide the foundation for these 

functions. Expanding upon this understanding, 

LE is a method for reducing dimensions that is 

not linear. Before representing nodes in the 

networks using the Laplacian's eigenvectors 

that correspond to lesser eigenvalues, LE 

builds a graph from datapoints, such as a k-NN 

or ε-neighborhood graph. Due to the 

"smoothness" of Laplacian's eigenvectors with 

small eigenvalues, nearby points on the 

manifold (or graph) will have comparable 

representations. This is the high-level idea for 

LE. The generalized eigenvector problem is 

the formal basis for LE learning embeddings: 
term using our notations: 

Σ 

d1(W, Ŵ) =  W i j Ŵi j 

Ŵ i j  = d2(Zi, Zj) = ||Zi − Zj||
2. 



Journal of Management & Entrepreneurship 
ISSN 2229-5348 

UGC Care Group I Journal 
Vol-11 Issue-1 June 2022 

 

 
Therefore, LE learns 

embeddings such that the 

Euclidean distance in the 

embedding space is small 

2 

for points that are close on 
the manifold. 

 

4.1.2 DISTANCE-BASED: 
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NON-EUCLIDEAN  METHODS 

It was previously supposed that embeddings 

are learnt in a Euclidean space via the 

distance-based approaches that were outlined. 

Since graphs are discrete data structures that 

do not conform to the standard Euclidean 

geometry, there have been a number of 

proposals to study graph embeddings into non- 

Euclidean spaces rather than traditional 

geometry. One such space is the hyperbolic 

one; it is ideal for representing hierarchical 

data due to its non-Euclidean geometry and 

continuous  negative curvature. 

For simplicity's sake, imagine hyperbolic 

space as a continuous tree model, with 

geodesics (the generalization of shortest routes 

on manifolds) behaving similarly to shortest 

paths in discrete tree models. In hyperbolic 

space, the volume of a ball increases at an 

exponential rate as its radius does, much as the 

number of nodes in a tree increases at an 

exponential rate as their distance from the root 

does. Hyperbolic space, on the other hand, 

offers more "room" to accommodate 

complicated hierarchies and compress 

representations, as this volume expansion is 

only polynomial in Euclidean space. 

Specifically, unlike in Euclidean space, 

hyperbolic embeddings may embed trees with 

arbitrarily low distortion in just two 

dimensions (Sarkar, 2011). Since hyperbolic 

geometry permits embeddings with far less 

distortion, it provides an intriguing alternative 

to Euclidean geometry for graphs exhibiting 

hierarchical patterns, and hyperbolic space is 

therefore an obvious choice for embedding 

data resembling  trees. 

Hyperbolic geometry has a long history of 

usage in network science research prior to its 

incorporation into machine learning 

 

applications. Using spanning trees, Kleinberg 

(2007) suggested a greedy technique for 

geometric roots that does greedy geographic 

routing after mapping sensor network nodes to 

hyperbolic plane coordinates. Studying the 

structural aspects of complex networks— 

networks having non-trivial topological 

features used to mimic real-world systems— 

has also made use of hyperbolic geometry. In 

2010, Krioukov et al. established a geometric 

framework for building scale-free networks, 

which are a class of complex networks 

characterized by power-law degree 

distributions. They also proved that every 

scale-free graph exhibiting metric structure 

has, at its core, hyperbolic geometry. A 

popularity-similarity (PS) framework for 

modeling the development and expansion of 

complicated networks was proposed by 

Papadopoulos et al. (2012). Using their radial 

coordinates in hyperbolic space and their 

angular coordinates, popular nodes and similar 

nodes are likely to be linked in this model. 

Moreover, this structure has been used to 

transform graph nodes into hyperbolic 

coordinates by increasing the probability that 

the network is generated by the PS model 

(Papadopoulos et al., 2014). Additional 

research has improved graph-to-hyperbolic- 

coordinate mapping efficiency using non- 

linear dimensionality reduction methods as 

LLE (Belkin and Niyogi, 2002; Alanis-Lobato 

et al., 2016; Muscoloni et al., 2017). 

 
More recently, there has been interest in learning 

hyperbolic representations of hierar- chical graphs or 

trees, via gradient-based optimization. We review 

some of these machine learning-based algorithms 

next. 
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Poin ca r é  embeddings 

Nickel and Kiela (2017) 

learn embeddings of 

hierarchical graphs such as 

lexical databases (e.g. 

WordNet) in the Poincar é 

model hyperbolic space. 
d2(Zi,  Zj  )   = 

Using our notations, this 

approach learns hyperbolic 

embeddings via the 

Poincar é distance 

function: 

dPoincar´e(Zi, Zj ) ||Zi − Zj||2 

 

= arcosh 1 + 2 2 . 
 

2 (1 − ||Zi||
2)(21 − ||Zj||

2) 

Embeddings are thenlearned 

by minimizing distances 

between 

Σ 

connected nodes while 

max- imizing distances 

between disconnected 

nodes: 

d1(W, Ŵ) = − 
Σ

 

ij 
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Wijlog 
e − Ŵi j 

 
 

k|W =0 e
− Ŵi k

 
ik 
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= −  Wijlog Softmaxk|Wik =0(−Wij), 

where the denominator is 

approximated using 

negative sampling. Note 

that since the hyper- bolic 

space has a manifold 

structure, embeddings need 

to be optimized using 

Riemannian optimization 

techniques (Bonnabel, 

2013) to ensure that they 

remain on the manifold. 

Other variants of these 

methods have been 

proposed. In particular, 

Nickel and Kiela (2018) 

explore a different model of 

hyperbolic space, namely 

the Lorentz model (also 

 ̂

ij 

 

 

known as the hyperboloid 

model), and show that it 

provides better numerical 

stability than the Poincar é 

model. Another line of 

work extends non- 

Euclidean embeddings to 

mixed- curvature product 

spaces (Gu et al., 2018), 

which provide more 

flexibility for other types of 

graphs (e.g. ring of trees). 

Finally, Chamberlain et al. 

(2017) extend Poincar é 

embeddings to incorporate 

skip-gram losses using 

hyperbolic inner products. 

 

4.1.3 OUTER  PRODUCT-BASED: 



Journal of Management & Entrepreneurship 
ISSN 2229-5348 

UGC Care Group I Journal 
Vol-11 Issue-1 June 2022 

 

MATRIX FACTORIZATION METHODS 
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Matrix factorization 
approaches  learn 
embeddings that lead to a 
low rank representation of 
some similarity matrix s(W 
), where s : R|V |×|V | → R|V 
|×|V | is a transformation of 
the weighted adjacency 
matrix, and many methods 
set it to the identity, i.e. s(W 
) = W . Other 
transformations include the 
Laplacian matrix or more 
complex similarities 
derived from proximity 
measures such as the Katz 
Index,  Common 
Neighbours or Adamic 
Adar. The decoderfunction 
in matrix factorization 
methods is a simple outer 
product: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ŵ = 

DEC(Z; 

ΘD) = 

ZZT. 

 

(3) 

F LG,REG(W, 
W  ; Θ) = 

||s(W ) − W ||2 . 

 

(4) 

That is, d1(·, ·) in Eq. (1) 
is the Frobenius norm 
between the reconstructed 
matrix and the target 
similarity matrix. By 
minimizing  the 
regularization loss, graph 
factorization methods learn 
low-rank representations 
that preserve structural 
information as defined by 
the similarity matrix s(W ). 
We now review important 
matrix factorization 
methods. 

 

 

Graph    factorization 

(G 
F) (Ahmed et al., 2013) 

learns a low-rank 

factorization for the 

adjacency   matrix by 

Matrix factorization methods 

learn embeddings by 

minimizing the regularization 
loss in Eq. (1) with: 

minimizing graph 

regularization loss in Eq. 

 

^ ^  (1) using: 

 

 

(vi,vj )∈E 

Σ 
d1(W, Ŵ ) = 

 

 

 
Recall that A is binary 
adjacency matrix, with Aij 
= 1 iif (vi, vj) ∈ E. We can 
express the graph 
regularization loss in 
terms of Frobenius norm: 

(Wij − Ŵ i j  )2. 

 

 
operator. Therefore, GF 
also learns a low- rank 
factorization of the 
adjacency matrix W 
measured in Frobenuis 
norm. Note that the sum is 
only over existing edges in 

LG,REG(W, ̂W ; Θ) = ||A · (W − Ŵ ) || 2 , 

where · is the element-wise 
matrix multiplication 

the graph, which reduces 
tFhe computational 
complexity of this method 
from O(|V |2) to O(|E|). 
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Graph representation 

with global structure 

information (GraRep) 

(Cao et al., 2015) The 

methods described so far 

are all symmetric, that is, 

the similarity score 

between two nodes (vi, vj) is 

the same a the score of (vj, 

vi). This might be a limiting 

assumption when working 

with directed graphs as 

some nodes can be strongly 

connected in one direction 

and disconnected in the 

otherdirection. GraRep 

overcomes this limitation 

by learning two 

embeddings per node, a 

source embedding Zs and a 

target embedding Zt, which 

capture  asymmetric 

proximity in directed 

networks. GraRep learns 

embeddings that preserve 

k- hop neighborhoods via 

powers of  the adjacency 

and minimizes the graph 

regularization loss with: 
T 

for each 1 ≤ k ≤ K. GraRep 
concatenates all 
representations to get 

—1 source embeddings Zs = 
[Z(1),s| . . . |Z(K),s] and 
target embeddings Zt = 
[Z(1),t| . . . |Z(K),t]. Finally, 
note that GraRep is not 
very scalable as the 
powers of D W might be 
dense matrices. 

HOPE (Ou et al., 2016) 

Similar to GraRep, HOPE 

learns asymmetric 

embeddings but uses a 

different  similarity 

measure. The distance 

function in HOPE is 

simply the Frobenius 

norm and the similarity 

matrix is a high-order 

proximity matrix (e.g. 

Adamic-Adar): 

TŴ = ZsZt 

^ LG , RE G (̂WF, W ; Θ) = ||s(W ) − W ||2 . 

The similarity matrix in 

HOPE is computed with 

sparse matrices, making 

this method more efficient 

and scalable than GraRep. 

Ŵ ( k  ) = Z(k),sZ(k),t 

LG,REG(W, Ŵ  ( k ) ; Θ) = ||D—kWk − Ŵ  ( k ) | |2 , F 

4.1.4 OUTER PRODUCT-BASED: 
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SKIP-GRAM METHODS 

Skip-gram graph 

embedding models were 

inspired by efficient NLP 

methods modeling prob- 

ability distributions over 

words for learning word 

embeddings (Mikolov etal., 

2013; Pen- nington et al., 

2014). Skip-gram word 

embeddings are optimized 

to predict context words, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
from (Godec, 2018). 

 

 

 

 

 

 

 

 

L = − 
—K≤i≤K,i/=0 

 

 

Figure 5: An overview 

of the pipeline for random- 

walk graph 

embedding methods. 

Reprinted with permission 

or surrounding words, for 

each target word in a 

sentence. Given asequence 

of words (w1, . . . 

, wT ), skip-gram will 

minimize the objective: 

Σ 
log P(wk—i|wk), 

 

 

for each target words wk. In practice, the conditional trains neural networks by maximizing the probability of probabilities 

can be estimated using neural networks, and predicting context nodes for each target node in a graph, skip-gram methods 

can be trained efficiently using negative namely nodes that are close to the target node in terms of sampling. Perozzi et 

al. (2014) empirically show the hops and graph proximity. For this purpose, node frequency statistics induced by 

random walks also follow embeddings are decoded into probability distributions over Zipf’s law, thus motivating the 

development of skip-gram nodes using row-normalization of the decoded matrix with graph embedding methods. These 

methods exploit random softmax. 

walks on graphs and produce node sequences that are To train embeddings, DeepWalk generates sequences of similar 

in positional distribution, as to words in sentences. nodes using truncated unbiased random walks on the In skip- 

gram graph embedding methods, the decoder graph—which can be compared to sentences in natural 

function is also an outer product (Eq. (3)) and the graph language models—and then maximize their log-likelihood. 

regularization term is computed over random walks on the Each random walk starts with a node vi1 ∈ V  and 

graph. repeatedly sample next node at uniform: vij+1 ∈ {v ∈ V 

DeepWalk (Perozzi et al., 2014) was the first attempt to | (vij , v) ∈ E}. The walk length is a hyperparameter. All generalize 

skip-gram models to graph-structured data. generated random-walk can then be passed to an NLP- DeepWalk draws 

analogies between graphs and language. embedding algorithm e.g. word2vec’s Skipgram model. Specif- ically, writing a 

sentence is analogous to performing This two-step paradigm introduced by Perozzi et al. (2014)a random walk, where 

the sequence of nodes visited during is followed by many subsequent works, such as node2vec the walk, is treated as the 

words of the sentence. DeepWalk (Grover and Leskovec, 2016). 
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We note that is common for underlying implementations to choice is studied further in (Abu-El-Haija et al., 2017). 
use two distinct represen- tations for each node (one for if s(W ) = Eq D—1W 

q 
, then training DeepWalk is 

when a node is center of a truncated random walk, and one equivalent to minimizing: 
when it is in the context). The implications of ̂t h i s  modeling 
where C = i j e x p ( WQi j )Σi s  a normalizing constant. 

Notethat computing C requires s
^
u m -  ming over all 

nodes in the graph which is computationally expensive. 
DeepWalk overcomes this issue by using a technique 
called hierarchical softmax, which computes C 

efficiently using binary trees. Finally, note that by 

computing truncated random walks on the graph, 

DeepWalk embeddings capture high-order node 

proximity. 

node2vec (Grover and Leskovec, 2016) is a random- 

walk based approach for unsuper- vised network 

embedding, that extends DeepWalk’s sampling 

strategy. The authors in- troduce a technique to generate 

biased random walks on the graph, by combining graph 

exploration through breadth first search (BFS) and 

through depth first search (DFS).Intu- itively, node2vec 

also preserves high order proximities in the graph but the 

balance between BFS and DFS allows node2vec 

embeddings to capture local structures in the graph, as 

well as global community structures, which can lead to 

more informative embeddings. Finally, note that 

negative sampling (Mikolov et al., 2013) is used to 

approximate the normalization factor C in Eq. (5). 

Watch Your Step (WYS) (Abu-El-Haija et al., 2018) 

Random walk methods are very sensitive to the 

sampling strategy used to generate random walks. For 

instance, some graphs may require shorter walks if local 

information is more informative that global graph 

structure, while in other graphs, global structure might 

be more important. Both Deep- Walk and node2vec 

sampling strategies use hyper-parameters to control this, 

such as the length of the walk or ratio between breadth 

and depth exploration. Optimizing over these hyper- 

parameters through grid search can be computationally 

expensive and can lead to sub-optimal embeddings. 

WYS learns such random walk hyper-parameters to 

minimize the overall objective (in analogy: each graph 

gets to choose its own preferred “context size”,such that 

the probability of predicting random walks is 

maximized). WYS shows that, when viewed in 

expectation, these hyperparameters only correspond in the 

objective to co- efficients to the powers of the adjacency 

matrix (Wk)1≤k≤K. These coefficients are denoted q = 

(qk)1≤k≤K and are learned through back-propagation. 

Should q’s learn a left-skewed distribution, then the 

embedding would prioritize local information and right- 

skewed distri- bution will enhance high-order 

relationships and graph global structure. This concept 

has been extended to other forms of attention to the ‘graph 

context’, such using a personalized context distributions 

for each node (Huang et al., 2020). 

Large scale Information Network Embedding 

(LINE) (Tang et al., 2015) learns embeddings that 

preserve first and second order proximity. To learn 

first order proximity preserving embeddings, LINE 

minimizes the graph regularization loss: 
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Intuitively,   LINE  with 
second-order     proximity 
decodes embeddings into 
context      conditional 
distributions   for  each 
node p2(·|vi).   Note that 
optimizing the   second- 
order  objective   is 
computationally expensive 
as it requires asum over 
the entire set ofedges. 
LINE uses negative 
sampling to sample negative 
edges according to some 
noisy  distribution   over 
edges.   Finally,  as   in 
GraRep,   LINE combines 
first and  second  order 
embeddings     with 
concatenation Z    = 
[Z(1)|Z(1)]. 

Hierarchical 

representation learning 
for networks    (HARP) 
(Chen et al., 2018b) Both 
node2vec and  DeepWalk 
learn node embeddings by 
minimizing non-convex 
functions, which can lead to 
local  minimas.    HARP 
introduces a strategy that 
computes initial embed- 
dings,  leading   to more 
stable   training    and 
convergence.      More 
precisely, HARP 
hierarchi- cally reduces the 
number of nodes in the graph 

via graph coarsening. Nodes 
are iteratively grouped into 
super nodes that form a 
graph with similar 
properties as the original 
graph, leading to multiple 
graphs with decreasing 
size (G1, . . . , GT ). Node 
embeddings are then 
learned for each coarsened 
graph using existing 
methods such as LINE or 
DeepWalk, and at time- 
step t, embeddings learned 
for Gt are used as initialized 
embedding for the random 
walk algorithm on Gt—1. 
This process is repeated 
until each node isembedded 
in the orig- inal graph. The 
authors show that this 
hierarchical   embedding 

strategy 
produces stable 
embeddings that capture 
macroscopic graph 
information. 

Splitter (Epasto and 

Perozzi, 2019) What if a 

node is not the correct ‘base 

unit’ of anal- ysis for a 

graph? Unlike HARP, 

which coarsens a graph to 

preserve high-level 

topological 

 

 

 

Figure 6: Auto-encoder methods. The graph structure (stored as the graph adjacency 

ma- trix) is encoded and reconstructed using encoder-decoder networks. Models are 
trained by optimizing the graph regularization loss computed on the reconstructed 
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features, Splitter is a graph 

embedding approach 

designed to better model 

nodes which have 

membership in multiple 

communities. It uses the 

Persona decomposition 

(Epasto et al., 2017), to 

create a derived graph, GP 

which may have multiple 

persona nodes for each 

original node in G (the 

edges of each original node 

are divided among its 

personas). GP can then be 

embedded (with some 

constraints) using any of 

the embedding methods 

discussed so far. The 

resulting representations 

allow persona nodes to be 

separated in the embedding 

space, and the authors show 

benefits to this on link 

prediction tasks. 

Matrix view of Skip- 

gram methods As noted 

by Levy and Goldberg 

(2014), Skip- grammethods 

can be viewed as matrix 

factorization, and the 

methods discussed hereare 

related to those of Matrix 

Factorization 

(Section 4.1.3). This 

relationship is discussed in 

depth by Qiu et al. (2018), 

who propose a general 

matrix factorization 

framework, NetMF, which 

uses the same underlying 

graph  proximity 

information as DeepWalk, 

LINE, and node2vec. 

Casting the node 

embedding problem as 

matrix factorization can 

offer benefits like easier 

algorithmic analysis (e.g., 

convergence guarantees to 

unique globally-optimal 

points), and dense matrix 

undergoing decomposition 

can be sampled entry-wise 

(Qiu et al., 2019). 

 

6.2 Auto-encoders 

Shallow embedding 

methods hardly capture 

non-linear  complex 

structures that might arise 

in graphs. Graph auto- 

encoders were originally 

introduced to overcome 

this issue by us- ing deep 

neural network encoder and 

decoder functions, due to 

their ability model non- 

linearities. Instead of 

exploiting the graph 

structure through the graph 

regularization term, auto- 

encoders   directly 

incorporate the graph 

adjacency matrix in the 

encoder function. Auto- 

encoders generally have an 

encoding and decoding 

network which are multiple 

layers of non-linear layers. 

For graph auto-encoders, 

the encoder function has 

the form: 

Z = ENC(W ; ΘE). 

That is, the encoder is a 

function of the adjacency 

matrix W only. These 

models are trained by 

minimizing a 

reconstruction error 

objective and we review 
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examples of such 
objectives next. 

Structural Deep 

Network Embedding 
(SDNE) (Wang et al., 
2016) learns auto- 
encoders that preserve 
first and second-order 
node proximity (Section 
2.1). The SDNE encoder 
takes as input a node 
vector: a row of the 

adjacency matrix as they 
explicitly set s(W ) = W , 
and produces node 
embeddings Z. The 
SDNE decoder return a 

reconstruc- tion Ŵ ,  which 
is trained to recover the 
original graph adjacency 
matrix (Fig. 7). SDNE 

 

 

Figure 7: Illustration of the SDNE model. The embedding layer (denoted Z) is 
shown in green. Reprinted with permission from (Godec, 2018). 

 
preserves second order node proximity by minimizing the graph regularization loss: 

Σ 

||(s(W ) − Ŵ) · B||2 F + αSDNE s(W )ij||Zi − Zj|| 2, 
ij 

 

where B is the indicator matrix for s(W ) with B = 1[s(W ) > 0]. Note that the second 
term is the regularization loss used by distance-based shallow embedding methods. 

The first term is similar to the matrix factorization regularization objec t̂ive,  

except that W is not computed using outer products. Instead, SDNE computes a unique 
embedding for each node in the graph using a decoder network. 

Deep neural Networks for learning Graph Representations  (DNGR) (Cao 

et al., 2016) Similar to SDNE, DNGR uses deep auto-encoders to encode and decode 

a node similarity matrix, s(W ). The similarity matrix is computed using a probabilistic 

method called random surfing, that returns a probabilistic similarity matrix through 

graph explo- ration with random walks. Therefore, DNGR captures higher-order 

dependencies in the graph. The similarity matrix s(W ) is then encoded and decoded 

with stacked denoising auto-encoders (Vincent et al., 2010), which allows to reduce 

the noise in s(W ). DNGR is optimized by minimizing the reconstruction error: 

LG,REG(W, ̂W; Θ) = ||s(W ) − Ŵ | | 2 . F 
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Σ 

 

 
6.3 Graph neural networks 

In graph neural networks, both the graph structure and node features are used in the encoder 
function to learn structural representations of nodes: 

Z = ENC(X, W; ΘE). 

We first review unsupervised graph neural networks, and will cover supervised graph 

neural networks in more details in Section 5. 

 
Variational Graph Auto-Encoders (VGAE) (Kipf and Welling, 2016b) use 
graph convolutions (Kipf and Welling, 2016a) to learn node embeddings Z = 
GCN(W, X; ΘE) (see Section 5.3.1 for more details about graph convolutions). The 
decoder is an outer product: DEC(Z; ΘD) = ZZT. The graph regularization term is 
the sigmoid cross entropy between the true adjacency and the predicted edge similarity 
scores: 

L (W, Ŵ; Θ) = − ^ ^ 

G,REG (1 − Wij)log(1 − σ ( Wij )) + Wijlog σ ( Wij )  . 
ij 

Computing the regularization term over all possible nodes pairs is computationally 
chal- lenging in practice, and the Graph Auto Encoders (GAE) model uses negative 
sampling to overcome this challenge. 

Note that GAE is a deterministic model but the authors also introduce variational graph 
auto-encoders (VGAE), where they use variational auto-encoders to encode and 
decode the graph structure. In VGAE, the embedding Z is modelled as a latent 
variable with a standard multivariate normal prior p(Z) = N (Z|0, I) and the 
amortized inference network 

qΦ(Z|W, X) is also a graph convolution network. VGAE is optimized by minimizing the 
corresponding negative evidence lower bound: 

NELBO(W, X; Θ) = −EqΦ(Z|W,X)[log p(W |Z)] + KL(qΦ(Z|W, X)||p(Z)) 

= LG,REG(W, W ; Θ) + KL(qΦ(Z|W, X )̂| |p(Z)) . 

Iterative generative modelling of graphs (Graphite) (Grover et al., 2019) extends 

GAE and VGAE by introducing a more complex decoder, which iterates between 

pairwise decoding functions and graph convolutions. Formally, the graphite 

decoder repeats the following iteration: 
 

Ŵ(k) = 
Z(k)Z(k) 

T 

||Z(k)||2 

11T 
+  

|V | 

 

 

Z(k+1) = G C N̂ ( W  (k), Z(k)) 

where Z(0) are initialized using the output of the encoder network. By using this parametric 

iterative decoding process, Graphite learns more expressive decoders than other methods 

based on non-parametric pairwise decoding. Finally, similar to GAE, Graphite can be 

deterministic or variational. 

2 
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Deep Graph Infomax (DGI) ( Vel i č kovi ć et al., 2019) is an unsupervised graph- 

level embedding method. Given one or more real (positive) graphs, each with its 

adjacency 
matrix W ∈ R|V |×|V | and node features X ∈ R|V |×d0 , this method creates fake (negative) 
adjacency matrices W — ∈ R|V −|×|V −| and their features X— ∈ R|V −|×d0 . It trains (i) an 
encoder that processes real and fake samples, respectively giving Z = ENC(X, W ; 
ΘE) ∈ R|V |×d and Z— = ENC(X—, W —; ΘE) ∈ R|V |×d, (ii) a (readout) graph 
pooling function R : R|V |×d → Rd, and (iii) a descriminator function D : Rd × Rd → [0, 
1] which is trained to output D(Zi, R(Z)) ≈ 1 and D(Z—, R(Z—)) ≈ 0, respectively, 
for nodes correspondjing to given graph i ∈ V and fake graph j ∈ V —. Specifically, 
DGI optimizes: 

|V | |V −| 
— — 

min − E log D(Zi, R(Z)) −
− 
E 

− 
log  1 − D ( Zj  , R(Z  ))  , (6) 

Θ X,W i=1 X ,W j=1 

 
 

 

Figure 8: Unsupervised graph neural networks. Graph structure and input features are 

mapped to low-dimensional embeddings using a graph neural network encoder. 

Embeddings are then decoded to compute a graph regularization loss (unsupervised). 

 

where Θ contains ΘE and the parameters of R, D. In the first expectation, DGI 
samples from the real 
(positive) graphs. If only 
one graph is given, it could 
sample some subgraphs 
from it (e.g. connected 
components). The second 
expectation samples fake 
(negative) graphs. InDGI, 
fake samples exhibit the 
real adjacency W — := W 
but fake featuresX— are a 
row-wise random 
permutation of real X, 
though  other  negative 

sampling 
strategies are plausible. 
The ENC used in DGI isa 
graph convolutional 
network, though any GNN 

can be used. The readout 
R summarizes an entire 
(variable-size) graph to a 
single (fixed- dimension) 
vector. Vel i č kovi ć et al. 
(2019) use R as a row-wise 
mean, though other graph 
pooling might be used e.g. 
ones aware of the 
adjacency, R : R|V |×d × R|V 
|×|V | → Rd. 

The optimization (Eq. 

(6))  is  shown by 

Ve l i ˇc ko vi´c et al. (2019) to 

maximize a lower- bound 

on the Mutual Information 

(MI) between the outputs of 

the encoder and the graph 
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pooling function. In other 

words, it maximizes the MI 

between individual node 

representa- tions and the 

graph representation. 

Graphical Mutual 

Information (GMI, Peng et 

al., 2020) presents another 

MI alternative: rather than 

maximizing MI of node 

information and an entire 

graph, GMI maximizes the 

MI between  the 

representation of a node 

and its neighbors. 

 
6.4 Summary of unsupervised 

embedding methods 

This section presented a 

number of unsupervised 

embedding methods. 

Specifically, the only 

supervision signal is the 

graph itself, but no labels 

for nodes or the graph are 

processed by these 

methods. 

Some of these methods 
(Sec. 4.1) are shallow, and 
ignore the node features X 
even if they exist. These 
shallow methods program 
the encoder as a “look-up 
table”, parametrizing it by 
matrix ∈ R|V |×d, where each 
row stores d-dimensional 
embedding vector for a 
node. These methods are 
applicable to transductive 
tasks where is only one 
graph: it stays fixed 
between training and 
inference. 

Auto-encoder methods (Sec. 4.2) are 
deeper, though they still ignore node 
feature matrix 

X. These are feed-forward neural 
networks where the network input is the 
adjacency matrix 

W . These methods are better 

suited when new nodes 

are expected atinference 

test time. Finally, Graph 

neural networks (Sec. 

4.3) are deep methods 

that process both the 

adja- 

cency W and node features X. These 
methods are inductive, and are generally 
empericially 
outperform the above two 

classes, for node- 

classification       tasks, 

especially when nodes have 

features. For   all   these 

unsupervised methods, the 

model output on the entire 

graph is ∈ R|V |×|V | that the 

objective     function 

encourages to well-predict 

the adjacency  W  or  its 

transformation s(W ). As 

such, these models  can 

compute        latent 

representations   of  nodes 

that trained to reconstruct 

the graph structure. This 

latent  representation   can 

subsequently be used for 

tasks at hand, including, 

link    prediction,     node 

classification,  or    graph 

classification. 

 

7. Supervised Graph 

Embedding 

A common approach for 

supervised network 

embedding is to use an 

unsupervised network 

embedding method, like the 
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ones described in Section 4 

to first map nodes to an 

embedding vector space, 

and then use the learned 

embeddings as input for 

another neural network. 

However, an important 

limitation with this two- 

step approach is that the 

unsupervised  node 

embeddings might not 

preserve important 

properties of graphs (e.g. 

node labels or attributes), 

that could have been useful 

for a downstream 

supervised task. 

Recently, methods 

combining these two steps, 

namely learning embeddings 

and predict- ing node or 

graph labels, have been 

proposed. We describe 

these methods next. 

 

7.1 Shallow  embedding  methods 

Similar  to  unsupervised 

shallow embedding 
methods, supervised 

shallow embedding meth- 

ods use embedding look-ups 

to map nodes to embeddings. 

However, while the goal in 

unsupervised  shallow 

embeddings is to learn a 

good graph representation, 

2002) is a very popular 

algorithm for graph-based 

semi-supervised  node 

classification. It directly 

learns embeddings in the 

label space, i.e. the 

supervised decoder 

function in LP is simply 

the identity function: 

yˆN = DEC(Z; ΘC) = Z. 

In particular, LP uses the 

graph structure to smooth the 

label distribution over the 

graph by adding a 

regularization term to the 

loss function, where the 

underlying assumption is 

that neighbor nodes should 

have similar labels (i.e. there 

exist some label consistency 

between connected nodes). 

The regularization in LP is 

computed with Laplacian 

eigenmaps: 

LG,REG( 
ij 

 

i j 2 W, Ŵ ; Θ) 
Σ 

= 

W i j Ŵi j 

 

 
(7) 

where 
 

supervised shal- low 

embedding methods aim at 

doing well on some 

downstream prediction task 

such as node or graph 

classification. 

LP minimizes this energy function over the space of functions that take fixed values on 

Label propagation (LP) 

(Zhu and Ghahramani, 

Ŵij = 

||yˆN − 

yˆN 

||2. 
 

 

(8) 
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i, 

labelled nodes (i.e. yˆN = yN ∀i|vi ∈ 

VL) using an iterative algorithm that 

updates a i i 
unlabelled node’s label distribution via 
the weighted average of its neighbors’ 
labels. 

There exists variants of 

this algorithm such as 

Label Spreading (LS) 

(Zhou et al., SPECTRUM- 
FREE METHODS 

ric, in the sense that the parameters in ij 

Fl 

We now cover spectrum-free 

methods, which approximate 

convolutions in the spectral 

do-  main  overcoming 

computational   limitations 

of SCNNs by  avoiding 

explicit computation of the 

Laplacian’s 

eigendecomposition. 

SCNNs filters are neither 

localized nor paramet- 

in Eq. (17) are all free. To overcome this 

 

issue, sprectrum-free 

methods use polynomial 

expansions to approximate 

 

 
where Pl (·) is a finite 

degree 
ij 

polynomial. 

Therefore, the total number 
of free parameters per filter 
depends on  the 
polynomial’s  degree, 
which is independent of the 
graph size. Assuming all 
eigenvectors are kept in Eq. 
(16), it can be rewritten as: 

 

 

 

 

ij 

F l = Pl (Λ) 
j 

spectral filters in Eq. (16) 
via: 
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Attention mechanisms 

(Vaswani et al., 2017) have 

been successfully used in 

language mod- els, and are 

particularly useful when 

operating on long sequence 

inputs, they allow models 

to identify relevant parts of 

the inputs. Similar ideas 

have been applied to graph 

convolution networks. 

Graph attention-based 

models learn to pay 

attention to important 

neighbors dur- ing the 

message passing step. This 

provides more flexibility in 

inductive settings, 

compared to methods that 

rely on fixed weights such 

as GCNs. 

Broadly speaking, 

attention methods learn 

neighbors’ importance 

using parametric func- 

tions whose inputs are node 

features at the previous 

layer. Using GCF, we can 

abstract patch functions in 

attention-based methods as 

functions of the form: 

ƒk(W, Hl) = α(W · gk(Hl)), 
where · indicates element- 
wise multiplication and α(·) 
is an activation function such 
as softmax or ReLU. 

Graph Attention 

Networks  (GAT) 

(Vel i č kovi ć et al., 2018) 

is an attention-based ver- 

sion of GCNs, which 

incorporate self-attention 

mechanisms   when 

computing patches. At 

every layer, GAT attends 

over the neighborhood of 
T  ealch node and learns to 

selectively pick nodes 

which lead to the best 

performance for some 

downstream task. Thehigh- 

level intuition is similar to 

SAGE (Hamilton et al., 

2017a) and makes GAT 

suitable for induc- tive and 

transductive problems. 

However, instead of 

limiting the convolution 

step to fixed size- 

neighborhoods as in 

SAGE, GAT allows each 

node to attend over the 

entirety of its neighbors and 

uses attention to assign 

different weights to different 

nodes in a neighborhood. 

The attention parameters are 

trained  through 

backpropagation, and the 

GAT self-attention 

mechanism is: 

 

gk(Hl) = 

LeakyReLU(Hl 
BTb0 

where ⊕ indicates 
summation of row and 
column vectors with 
broadcasting, and (b0, b1)and 
B are trainable attention 
weight vectors and weight 

T 

⊕ b1 BH ) 
 

 
matrix respectively. Theedge 
scores are then row 
normalized with softmax. In 
practice, the authors propose 
to use multi-headed attention 
and combine the propagated 
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signals with a concatenation 
of the average operator 
followed by some activation 
function. GAT can be 
implemented efficiently by 
computing the self-attention 
scores in parallel across 
edges, as well as computing 
the output representations in 
parallel across nodes. 

Mixture Model Networks 

(MoNet) Monti et al. 

(2017) provide a general 

framework that works 

particularly well when the 

node features lie in multiple 

domains such as 3D point 

clouds or meshes. MoNet 

can be interpreted as an 

attention method as itlearns 

patches using parametric 

functions in a pre-defined 

spatial domain (e.g. spatial 

coordinates), and then 

applies convolution filters 

in the graph domain. 

Note that MoNet is a 

generalization of previous 

spatial approaches such as 

Geodesic CNN (GCNN) 

(Masci et al., 2015) and 

Anisotropic CNN (ACNN) 

(Boscaini et al., 2016), 

which both introduced 

constructions for 

convolution layers on 

manifolds. However, both 

GCNN and ACNN use 

fixed patches that are 

defined on a specific 

coordinate system and 

therefore cannot generalize 

to graph-structured data. 

The MoNet framework is 

more gen- eral; any pseudo- 

coordinates such as local 

graph features (e.g. vertex 

degree) or manifold 

features (e.g. 3D spatial 

coordinates) can be used to 

compute the patches. More 

specifi- cally, if Us are 

pseudo-coordinates and Hl 

are features from another 

domain, then using GCF, 

the MoNet layer can be 

expressed as: 
 

 

Hl+1 = σ 
K 

 

 

k=1 
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(W · gk(Us))HlΘl , k 

where ·  is element-wise s 

(23) 

1 s T  —1 s 

multiplication and gk(Us) g (U ) = exp − (U − µ ) Σ (U − µ ) , 
 

are the learned param
k  

etric 
patches, which are |V |×|V | 
matrices. In practice, 
MoNet uses Gaussian 
kernels to learn patches, 
such that: 

2 k k 
 

where µk and Σk are learned 

parameters, and Monti etal. 

(2017) restrict Σk to be a 

diagonal matrix. 

 

 

 

 

 

(a) GCN layers. (b) HGCN layers. 

 

 

 

 

 

Figure 13: Euclidean (left) and hyperbolic (right) embeddings of a tree graph. 

Hyperbolic embeddings learn natural hierarchies in the embedding space (depth 

indicated by color). Reprinted with permission from (Chami et al., 2019). 

7.2 Non-Euclidean Graph 
Convolutions 

Hyperbolic shallow 

embeddings enable 

embeddings of hierarchical 

graphs with smaller dis- 

tortion than Euclidean 

embeddings. However, one 

major downside of shallow 

embeddings is that they are 

inherently transductive and 

cannot generalize to new 

graphs. On the other hand, 

Graph Neural Networks, 

which leverage node 

features, have achievedstate- 

of-the-art performance on 

inductive graph embedding 

tasks. 

Recently, there has been 

interest in extending Graph 

Neural Networks to learn 

non- Euclidean embeddings 

and thus benefit from both 

the expressiveness of Graph 

Neural Networks and 

hyperbolic geometry. One 

major challenge in doing so 

is how to perform 

convolutions in a non- 

Euclidean space, where 

standard operations such as 

inner products and matrix 

multiplications are not 

defined. 
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Hyperbolic  Graph 

Convolutional Neural 

Networks (HGCN) 

(Chami et al., 2019) and 

Hyperbolic Graph Neural 

Networks (HGNN) (Liu et 

al., 2019) apply graph 

convolutions in hyperbolic 

space by leveraging the 

Euclidean tangent space, 

which provides a first-order 

approximation of the 

hyperbolic manifold at a 

point. For every graph 

convolution step, node 

embeddings are mapped to 

the Euclidean tangent space 

at the origin, where 

convolutions are applied, 

and then mapped back to 

the hyperbolic space. 

These approaches yield 

significant improvements 

on graphs that exhibit 

hierarchical structure (Fig. 

13). 

 
7.3 Summary  of  supervized 

graph embedding 

This section presented a 

number of methods that 

process task labels (e.g., 

node or graph labels) at 

training time. As such,model 

parameters are directly 

optimized on the upstream 

task. 

Shallow methods use 

neither node features X nor 

adjacency W in the encoder 

(Section 5.1), but utilize the 

adjacency to ensure 

consistency. Such methods 

are useful in transductive 

settings, if only one graph 

is given, without node 

features, a fraction of nodes 

are labeled, and the goal is 

to recover labels for 

unlabeled nodes. 

8. Applications 

9. Many different kinds of 

applications, both supervised and 

unsupervised, may benefit from 

graph representation learning 

techniques. When learning 

embeddings in an unsupervised 

setting, task-specific labels are 

not processed. Instead, the graph 

serves as a tool for self- 

monitoring. Using unsupervised 

embedding techniques (Section4, 

top branch of the Taxonomy in 

Fig. 3), one may learn 

embeddings that preserve the 

network (i.e. neighborhoods) or 

the structural equivalence of 

nodes (for distinction, see 

Section 2.2.3). Alternatively, in 

supervised applications, such as 

graph or node classification, the 

optimization of node 

embeddings is done directly for a 

particular job. Section 5, the 

bottom branch of the Taxonomy 

in Figure 3, describes supervised 

embedding approaches that may 

be used in this context. Here are 

a few of the most common GRL 

jobs and the methods used to do 

them, as shown in Table 5. What 

follows is a rundown of typical 
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supervised and unsupervised 

graph uses. 

9.1 Unsupervised applications 

9.1.1 GRAPH RECONSTRUCTION 

10. Graph reconstruction is the 

gold standard for unsupervised 

graph applications. The objective 

here is to train mapping functions 

(parametric or not) that retain 

graph features like node 

similarity while mapping nodes 

to  dense distributed 

representations. By reducing a 

reconstruction error—the error in 

retrieving the original graph from 

learnt embeddings—models may 

be trained, and graph 

reconstruction doesn't need any 

supervision. For some instances 

of reconstruction aims, see 

Section 4, and to learn about the 

techniques used for this purpose, 

see Section 5. Similar to 

dimensionality reduction, the 

overarching objective of graph 

reconstruction is to combine 

incoming data into a low- 

dimensional representation. 

Graph reconstruction models aim 

to compress data specified on 

graphs into low-dimensional 

vectors, rather than the usual way 

of reducing dimensionality (e.g., 

principal component analysis) 

which involves converting high- 

dimensional vectors into low- 
dimensional ones. 

10.1.1 LINK  PREDICTION 

11. The goal of link prediction 

is to forecast which edges in a 

graph will eventually take a 

certain path. To rephrase, link 

prediction tasks aim to anticipate 

the appearance of linkages that 

have not yet been detected, such 

as links that might emerge in the 

future for networks that are both 

dynamic and temporal. 

Furthermore, malicious linksmay 

be located and eliminated with 

the use of link prediction. 

Common examples of this kind 

of  application are 

recommendation systems that 

utilize graph learning models to 

forecast the interactions between 

users and products and social 

networks that use these models to 

forecast the friendships between 

users. 

 

 

 

 

12.  
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Method 
Training complexity 

Training 
input 

Memory Computation 

(a) DeepWalk (Perozzi, 2014) O(|V |d) O(c2d|V |log2 |V |)  
 
 
 

 
W 

(b) node2vec (Grover, 2016) O(|V |d) O(c2d|V |) 

LINE (Tang, 2015) 
(c) HOPE (Ou, 

2016) GF 
(Ahmed, 2013) 

O(|V |d) O(|E|d) 

(d) 
SDNE (Wang, 
2016) DNGR 
(Cao, 2016) 

O(|V |bD) O(|V |bM) 

(e) 
GraRep (Cao, 2015) 

WYS (Abu-el-haija, 2018) 
O(|V |2) O(|V |3c + |V |2d) 

(f) HARP (Chen, 2018) inherits W 

(g) Splitter (Epasto, 2019) inherits W 

(h) MDS (Kruskal, 1964) O(|V |2) O(|V |3) 

X induces W (i) 
LP (Zhu, 2002) 

LLE (Roweis, 2000) 
O(|V |) O(|E| × iters) 

(j) GNN Methods O(|V |D) O(|E|D + |V |M) X, W 

(k) SAGE (Hamilton, 2017) O(bFHD) O(bFH—1D + bFHM) X, W 

(l) GTTF (Markowitz, 2021) O(bFHD) O(bFH—1D + bFHM) X, W 

 

Summarization and real-world applications of 

GRL techniques (Table 5). The columns 

running from right to left show the following: 

method classes, the hardware cost to train the 

method, and real cases where the methods 

have been useful: inputs to the methods, which 

may be either an adjacency matrix (W) or node 

characteristics (X), or both. This is how we get 

the Training Complexity. In the method 

classes (a-h), "c" represents the size of the 

context (such as the length of a random walk) 

and "d" the size of the embedding dictionary; 

both are parameters of node embedding 

techniques. The embedding dictionary isstored 

in (a) DeepWalk and (b) node2vec, with(V d) 

floating-point entries. During training, a 

predetermined number of walks with a defined 

duration are simulated from every node V. 

Along these walks, the dot products of all 

node-pairs within a window of size c are 

computed. Both the hierarchical softmax (a) 

and the negative sampling (b) are applied to 

every pair. To see the complexity per batch, 

just replace the two V terms on the left with 

batch size b. But to keep things simple, we 

look at it per period. (c) All edges are cycled 

through by LINE (Tang, 2015), HOPE (Ou, 

2016), and GF (Ahmed, 2013). (d) The 

adjacency matrix is used to train auto- 

encoders via SDNE and DNGR, with batch- 

size b, and the total dimensions of all layers 

denoted by A dA. To handle floating-point 
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operations in matrix multiplications, the 

formula = A dAdA+1 is used. With full-batch, 

b equals V. (e) GraRep and WYS store a dense 

square matrix with (V 2) non-zero elements, 

and they elevate the transition matrix to the 

power of c. Their complexity is algorithm- 

specific since (f) HARP (Chen, 2018) and (g) 

Splitter can execute any algorithm, for 

example, (a-e). In this case, we assume that 

both the average number of persons per node 

for Splitter and the number of times HARP is 

activated (the graph's scales) are minimal (V). 

(h) While LE necessitates the entire 

eigendecomposition of the graph laplacian 

matrix (to get the eigenvectors corresponding 

to the fewest eigenvalues), MDS calculates 

all-pairs similarity. If the number of label 

classes is small, (i) LP and LLE will loop over 

edges up to "iters" iterations. (j) include GCN, 

GAT,  MixHop,  GIN,  GGNN,  MPNN, 

ChebNet, and MoNet graph convolution 

algorithms  (Kipf,  2016;  Defferrard,  2016; 

Abu-el-haija,  2019;  Xu,  2018;  Li,  2015; 
Gilmer, 2017; Xu, 2018; Xu, 2018; Monti, 

2017). The creators of those techniques gave a 

full-batch implementation, which we presume 

is naïve. After adding up all of the floating- 

point operations performed by its neighbors (a 

total of E floats), each node in a given layer 

multiplies that total by the layer filter (a total 

of V floats). Lastly, sampling approaches such 

as (k-l) enable learning to scale to bigger 

networks by reducing the hardware required of 

the training algorithm and separating memory 

complexity from graph size. (k) For each node 

in the batch (with a size of b), (l) GTTF 

samples F nodes, and for each node's 

neighbors, F as well. This continues until the 

tree height reaches H. We disregard the 

runtime complexity of data pre-processing for 

(k) and (l) since it has to be calculated only 

once per graph, independent of the number of 

(hyperparameter) sweep computations. A 

common approach for training link prediction 

models is to mask some edges in the graph (positive 

and negative edges), train a model with the 

remaining edges and then test it on the masked set 

of edges. Note that link prediction is different from 

graph reconstruction. In link prediction, we aim at 

predicting links that are not observed in the original 

graph while in graph reconstruction, we only want 

to compute embeddings that preserve the graph 

structure through reconstruction errorminimization. 

Finally, while link 

prediction has similarities 

with supervised tasks in the 

sense that we have labels 

for edges (positive, 

negative, unobserved), we 

group it under the 

unsupervised class of 

applications since edge 

labels are usually not used 

during training, but only 

used to measure the 

predictive quality of 

embeddings. That is, 

models described in 

Section 4 can be applied to 

the  link prediction 

problem. 

 

12.1.1 CLUSTERING 

13. The discovery of 

communities is one of the 

numerous real-world 

applications of clustering. For 

example, clusters may be seen in 

biological networks (as 

collections of proteins with 

shared characteristics) or social 

networks (as associations of 

individuals with same interests). 
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Keep in mind that clustering 

issues may be solved using the 

unsupervised approaches 

discussed in this review. For 

example, one might apply a 

clustering algorithm, such as k- 

means, to embeddings that are 

produced by an encoder. Another 

option is to include clustering 

into the learning process while 

using a shallow or Graph 

Convolution embedding model 

(Rozemberczki et al., 2019; 

Chiang et al., 2019; Chen et al., 

2019a). 

 

 
13.1.1 VISUALIZATION 

14. For visualizing graphs, 

there are several ready-made 

tools that map nodes onto two- 

dimensional manifolds. Network 

scientists are able to get a 

qualitative understanding of 

graph characteristics, node 

interactions, and node clusters 

via the use of visualizations. 

Force-Directed Layouts-based 

approaches with different web- 

app Javascript implementations 

are among the popular tools. To 

achieve this visualization, onecan 

use an unsupervised graph 

embedding method such as t- 

distributed stochastic neighbor 

embeddings (t-SNE) or principal 

component analysis (PCA) after 

training an encoder-decoder 

model (which is equivalent to a 

shallow embedding or graph 

convolution network) (Maaten 

and Hinton, 2008; Jolliffe, 2011). 

Graph learning techniques are 

often evaluated qualitatively 

using this approach (embedding 

→ dimensionality reduction). To 

color the nodes in 2D 

visualization plots, one may 

utilize their characteristics if the 

nodes have any. As seen in visual 

representations of different 

approaches, good embedding 

algorithms place nodes in the 

embedding space that have 

comparable properties close 

together (Perozzi et al., 2014; 

Kipf and Welling, 2016a; Abu- 

El-Haija et al., 2018). To 

conclude, approaches that map 

every graph to a representation 

may also be projected into two 

dimensions to display and 

qualitatively assess graph-level 

features, in addition to mapping 

every node to a 2D coordinate 

(Al-Rfou   et   al.,   2019). 

 

 
14.1 Supervised  applications 

14.1.1 NODE CLASSIFICATION 

15. An essential supervised 

graph application is node 

classification, which aims to 

develop representations of nodes 

that can reliably predict their 

labels. In citation networks, node 

labels may represent scientific 



Journal of Management & Entrepreneurship 
ISSN 2229-5348 

UGC Care Group I Journal 
Vol-11 Issue-1 June 2022 

 

subjects; in social networks, they 

might represent gender and other 

characteristics. One typical use 

case is semi-supervised node 

classification due to the high cost 

and time commitment associated 

with labeling huge graphs. The 

objective in semi-supervised 

situations is to use node linkages 

to predict characteristics of 

unlabeled nodes, with just asmall 

percentage of nodes being 

tagged. Since there is a single 

partly labeled fixed graph in this 

context, it is considered 

transductive. Inductive node 

classification is another option; 

this is the process of determining 

how to categorize nodes in 

different networks. 

Keep in mind that if the node 

attributes are descriptive of the 

goal label, they may greatly 

improve performance on 

classified nodes jobs. In fact, by 

integrating structural data with 

semantic information derived 

from features, state-of-the-art 

performance on multiple node 

classification benchmarks has 

been attained by more recent 

approaches as GCN (Kipf and 

Welling, 2016a) or GraphSAGE 

(Hamilton et al., 2017a). 

However, other approaches, such 

random walks on graphs, do not 

take use of feature information 

and so perform worse on these 

tasks. 

 

15.1.1 GRAPH CLASSIFICATION 

16. One example of a 

supervised application is graph 

classification, the goal of which 

is to use an input graph to predict 

labels at the graph level. Due to 

the constant introduction of 

novel graphs during testing, 

graph classification problems are 

fundamentally inductive. 

Biochemical activities and online 

social networks are also common 

choices. Graphs representing 

molecules are often used in the 

biological field. A feature vector 

that is a 1-hot encoding of an 

atom's number may serve as a 

node in these graphs, and a bond 

can be represented by an edge 

between two nodes, with the kind 

of the bond being indicated by 

the feature vector. One example 

of a task-dependent graph-level 

label is MUTANG, which 

indicates the mutagenicity of a 

medicine against bacteria 

(Debnath et al., 1991). Typically, 

people are represented as nodes 

in online social networks, while 

connections or interactions are 

symbolized by edges. As an 

example, there are a lot of graphs 

in the Reddit graph classification 

jobs (Yanardag  and 

Vishwanathan, 2015). An edge 

will link two nodes in a graph 

that represents a conversation 

thread, such as when one person 

comments on another's remark. 
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Given a comment graph, the 

objective is to identify the 

community (sub-reddit) where 

the conversation occurred.While 

tasks such as nodeclassification 

and edge prediction include 

pooling at the node and edge 

levels, respectively, graph 

classification tasks need a 

different kind of pooling to 

aggregate data at the node and 

graph levels. As said before, 

expanding this concept ofpooling 

to any kind of graph is a 

challenging and ongoing topic of 

study. Node order shouldn't 

affect the pooling function. For 

example, several approaches use 

basic pooling, including taking 

the mean or total of all latent 

vectors at the node level in the 

network (Xu et al., 2018). Ying 

et al., 2018b; Cangea et al., 2018; 

Gao and Ji, 2019; Lee et al., 2019 

are among the approaches that 

employ differentiable pooling. 

Tsitsulin et al. (2018a), Al-Rfou 

et al. (2019), and Tsitsulin et al. 

(2020a) all provide supervised 

approaches for learning graph- 

level representations, but there 

are also many unsupervised 

methods. Some unsupervised 

graph-level models that stand out 

include reviewed by 

Viswanathan et al. (2010) and 

Kriege et al. (2020) as graph 

kernels (GKs). 

Although GKs are not our primary concern, 

we do touch on their links to GRAPHEDM 

here. Graph-level tasks, such graph 

categorization, are suitable for GKs. In order 

to convert any two graphs into a scalar, GK 

may automatically apply a similarity function. 

Counting the number of walks (or pathways) 

that two graphs have in common is one way 

that traditional GKs calculate graph similarity. 

For example, each walk may be stored as a 

series of node labels. Common practice 

dictates using node degrees as labels in the 

absence of explicit labels. The capacity ofGKs 

to identify (sub-)graph isomorphism is a 

common metric for analysis. When ordering of 

nodes is ignored, two (sub-)graphs are 

considered isomorphic if they are identical. 

According to the 1-dimensional Weisfeiler- 

Leman (1-WL) heuristic, two sub-graphs are 

considered isomorphic since sub-graph 

isomorphism is NP-hard. In each graph, 

histograms are used to tally the statistics of the 

nodes (e.g., how many nodes with the label 

"A" have an edge to nodes with the label "B"). 

If two graphs' histograms, obtained from the 

same 1-hop neighborhood, are equal, then the 

graphs are considered isomorphic according to 

the 1-WL heuristic. An example of a GNN that 

has been shown to achieve the 1-WL heuristic 

is the Graph Isomorphism Network (GIN; Xu 

et al., 2018). This means that GIN can only 

map two graphs to the same latent vector if 

they are considered isomorphic according to 

the 1-WL heuristic. In some newer studies, 

GKs and GNNs are used together. Using the 

similarity of the "tangent space" of the goal 

with respect to the Gaussian-initialized GNN 

parameters, Du et al. (2019) models the 

similarity of two graphs, and Chen et al. 
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(2020) extracts walk patterns. There isn't any 

GNN training in either (Du et al., 2019; Chen 

et al., 2020). Instead, kernel support vector 

machines and other kernelized algorithms are 

used to the pairwise Gram matrix during 

training. Therefore, our GCF and 

GRAPHEDM frameworks are not well-suited 

to include these methodologies. However, 

there are other approaches that don't rely on 

indirectly computing graph-to-graph 

similarity scalar scores but instead directly 

map graphs to high-dimensional latent spaces. 

One example is Morris et al.'s (2019) k-GNN 

network, which is deliberately coded as a 

GNN but can actually implement the k-WL 

heuristic (which is identical to 1-WL but 

where histograms are produced up-to k-hop 

neighbors). Therefore, our GCF and 

GRAPHEDM frameworks can define the k- 

GNN model classes. 

 
Conclusion  and  Open  Research  Directions 
We presented a standard method for comparing ML 

models trained on graph-structured data in this survey. 
Deep graph embedding techniques, graph auto-encoders, 
graph regularization techniques, and graph neural 
networks are all included in our expanded GRAPHEDM 
framework, which was before used for unsupervised 
network embedding. Additionally, we presented a graph 
convolution framework (GCF) for describing and 
comparing graph neural networks that rely on 
convolution, such as spatial and spectral graph 
convolutions in particular. We included more than 30 
supervised and unsupervised techniques for graph 
embedding in our exhaustive taxonomy of GRL methods, 
which we presented using this framework. 
With any luck, the results of this poll will inspire further 
GRL research, which should lead to solutions for the 
problems these models are experiencing right now. The 
taxonomy is very useful for practitioners since it helps 
them understand the many tools and applications 
available and makes it easy to choose the right technique 
for each situation. Furthermore, academics who have just 
published Researchers may use the taxonomy to organize 

their inquiries, locate relevant literature, establish 
reliable baselines for comparison, and choose suitable 
methods for data analysis. 
Although GRL approaches have shown to be very 
effective in node classification and link prediction, there 
are still several issues that need to be addressed. We 
then go on to talk about the difficulties and future 
prospects of graph embedding models in terms of 
research. 

Evaluation and benchmarks 

Standard benchmarks for node classification 

or link prediction are usually used to evaluate 

the approaches presented in this review. To 

illustrate the point, graph embedding 

techniques are often evaluated against citation 

networks. The findings may differ greatly 

depending on the datasets' splits or training 

processes (such as early halting), which is a 

problem with these tiny citation benchmarks, 

as shown in recent research (Shchur et al., 

2018). 

Using strong and consistent evaluation 

methodologies, as well as expanding the scope 

of assessment beyond small node 

categorization and link prediction 

benchmarks, is crucial for the improvement of 

GRL approaches. New graph benchmarks 

with leaderboards (Hu et al., 2020; Dwivedi et 

al., 2020) and graph embedding libraries (Fey 

and Lenssen, 2019; Wang et al., 2019; Goyal 

and Ferrara, 2018a) are examples of recent 

development in this approach. Similarly, in 

order to test GNNs' reasoning skills, Sinha et 

al. (2020) suggested a series of exercises based 

on first-order logic. 

 

Fairness in Graph Learning To prevent 

models from correlating'sensitive' characteristics with 
the model's predicted output, a new area called 
Fairness in Machine Learning is developing (Mehrabi 
et al., 2019). Considering the association of the graph 
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structure (the edges) and the feature vectors of the 
nodes with the final output, these considerations might 

be particularly significant for graph learning 

challenges. 

Bose and Hamilton (2019) state that adversarial 

learning is the most prevalent method for 

implementing fairness requirements in models. This 

method may be used to GRL in order to debias the 

model's predictions with respect to the sensitive 

feature(s). But there are no certain assurances on the 

precise amount of bias eliminated using adversarial 

approaches. The debiasing job itself may be difficult 

to accomplish with several debiasing strategies(Gonen 

and Goldberg, 2019). Provable guarantees for 

debiasing GRL have been the focus of recent work in 

the field (Palowitch and Perozzi, 2019). 

 

Application to large and realistic graphs 
Graph learning techniques are typically reserved for 

datasets of tens of thousands to hundreds of thousands 

of nodes. Still, there are far bigger graphs in the actual 
world, with billions of nodes. A Distributed Systems 

configuration with several computers, like 

MapReduce, is necessary for methods that scale for 

big graphs (Lerer et al., 2019; Ying et al., 2018a) 

(Dean and Ghemawat, 2008). Is there a way for a 

researcher to use a home computer to apply a learning 

approach to a very big graph that fits on a single hard 

drive (e.g., with a one terabyte size) but does not fit on 

RAM? See how this stacks up against a computer 

vision challenge using a large picture collection (Deng 

et al., 2009; Kuznetsova et al., 2020). Any model that 

can fit on RAM can be trained on personal computers, 

regardless of the size of the dataset. Graph embedding 

models, in particular those whose parameters grow in 

size as the graph's nodes do, may find this issue very 

difficult to solve. 

Even picking the right graph to utilize as input might 

be challenging at times in business. The Google 

system Grale, which learns the right graph from 

several characteristics, is described by Halcrow et al. 

(2020). For graph learning on massive datasets, Grale 

uses similarity search methods (such as locality 

sensitive hashing). A recent study by Rozemberczki et 

al. (2021) adds an attention network to the Grale 

model, enabling end-to-end learning. 

 
We anticipate that learning algorithms for big graphs 

that are still executable on a single computer will 

present new mathematical and practical problems. We 

are hopeful that scholars would prioritize this area so 

that non-expert practitioners, like a neurology 

researcher, may access and use these learning methods 

to evaluate the human brain's sub-graph, which is 

comprised of neurons and synapses represented as 

nodes and edges. 

 

Molecule generation Learning on graphs 

has a great potential for helping molecular 

scientists to reduce cost and time in the 

laboratory. Researchers proposed 

methods for predicting quantumproperties 

of molecules (Gilmer et al., 2017; 

Duvenaud et al., 2015) and for generating 

molecules with some desired properties (Liu 

et al., 2018; De Cao and Kipf, 2018; Li et 

al., 2018; Simonovsky and Komodakis, 

2018; You et al., 2018). A review of recent 

methods can be found in (Elton et al., 2019). 

Many of these methodsare concerned with 

manufacturing materials with certain 

properties (e.g. conductance and 

malleability), and others are concerned drug 

design (Jin et al., 2018; Ragoza et al., 

2017; Feng et al., 2018). 
Combinatorial optimization 

Numerous fields encounter computationally 

challenging challenges, such as routing 

science, cryptography, decision-making, and 

planning. Computationally hard problems are 

those for which the techniques used to find the 

best solution have poor scalability. We cite 

(Bengio et al., 2018) for a summary of the 

ways that have recently attracted attention in 
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solving combinatorial optimization issues by 

using machine learning approaches, such as 

reinforcement learning. 

Recently, there has been interest in using 

graph embeddings to approximate solutions to 

NP-hard problems (Khalil et al., 2017; Nowak 

et al., 2017; Selsam et al., 2018; Prates et al., 

2019). Graphs are a natural representation for 

many hard issues, such as SAT and vertex 

cover; in fact, many problems may be 

described in terms of graphs. These techniques 

use a data-driven approach to solving 

computationally difficult issues, such as 

determining whether a specific instance (e.g., 

node) is part of the best solution from among 

many instances of the problem. Find 

assignments that strive to accomplish a goal 

(e.g., the minimal conductance cut) in other 

works that optimize graph partitions (Bianchi 

et al., 2020; Tsitsulin et al., 2020b). All 

of these methods use GNNs as their starting 

point since GNNs, thanks to their relational 

inductive biases, can better depict graphs than 

regular neural networks (e.g. permutation 

invariance). Current solutions still outperform 

these data-driven approaches,but GNNs have 

shown promise in generalizing to bigger 

problem cases (Nowak et al., 2017; Prates et 

al., 2019). Lamb et al. (2020) provides a 

comprehensive overview of GNN- based 

approaches to combinatorial optimization in 

their latest study on neural symbolic learning. 

 
Non-Euclidean embeddings The underlying space 

geometry is an important part of graph embeddings, as 
we saw in Sections 4.1.2 and 5.6. All graphs are 
discrete complex, non-Euclidean structures with high 
dimensions; however, there is currently no simple 
method for encoding such data into embeddings with 

low dimensions that maintain the graph topology 

(Bronstein et al., 2017). Hyperbolic and mixed- 

product space embeddings are two examples of non- 

Euclidean embeddings that have recently attracted 

attention and made strides in the field of learning (Gu 

et al., 2018; Nickel and Kiela, 2017). In comparison to 

their Euclidean counterparts, these non-Euclidean 

embeddings have the potential for embeddings that are 

more expressive. For example, compared to Euclidean 

embeddings, hyperbolic embeddings exhibit 

significantly less distortion when representing 

hierarchical data (Sarkar, 2011). This has led to state- 

of-the-art outcomes in numerous contemporary 

applications, including linguistics tasks (Tifrea et al., 

2018; Le et al., 2019) and knowledge graph link 

prediction (Balazevic et al., 2019; Chami et al., 2020). 

Non-Euclidean embeddings often bring two difficulties: 

first, hyperbolic space precision problems (e.g., at the 

Poincar'e ball boundary) (Sala et al., 2018; Yu and De Sa, 

2019), and second, difficult Riemannian optimization 

(Bonnabel, 2013; Becigneul and Ganea, 2018). 

Furthermore, it is not apparent how to choose the 

appropriate shape for an input graph. An intriguing area for 

future research is the process of selecting or learning the 

appropriate geometry for a specific discrete graph, even 

though there are already discrete measures for the graphs' 

tree-likeliness, such as Gromov's four-point condition 

(Jonckheere et al., 2008; Abu-Ata and Dragan, 2016; Chen 

et al., 2013; Adcock et al., 2013). 

Assurances based on theory Recent developments in graph 

embedding model design have outperformed state-of-the- 

art methods in several domains. Nevertheless, our 

knowledge of the theoretical promises and constraints of 

graph embedding models is currently restricted. Xu et al. 

(2018), Verma and Zhang (2019), Morris et al. (2019), and 

Garg et al. (2020) all apply current findings from learning 

theory to the issue of GRL, which is a new field of study 

on GNN representational power. If we want to know what 

the theoretical benefits and drawbacks of graph embedding 

techniques are, we need to build theoretical frameworks. 
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